The Role of Computers in Research and

NASA Conference Publication 10159

/1038

35602?

Development at Langley Research Center .

Compiled by
Carol D. Wieseman
Langley Research Center o Hampton, Virginia

From ¢ 3
[+ B
™
[3
330%, 30* W
ofc]
e 020
2o f Revert FRCB/HSY Cs Os O
Crey Revvi¢ § Random whits ¢ E

Red Creen Blue B

)

“ o A ' R ey At -
152 (EH I 106 216 N
e c el i 4
Anply § Brits § Reset § Undo Trtensr "~ mﬁ'—-———-—
Nomodf Dim §1 F21 .
Norm § Sharp § 3 £ a § Cuthes :
HiztEa§ Dull § set f Close o
T X
Display with HSV/RGB mods. ::
Auto-apply HSV/RGB mods. -
ATy e e o
AUto~recsat on new image.

$fi

|DHEERRA

it xv wing.rgb &

{1) 1379

3 xwd >! colorEdit.xbm

T cat colorEdit. xbm | xwdtopnm >! colorEdit.ppm

xwdtopnm: writing PPM file

Rt cat colorEdit.ppm | pamsmooth | pnmscale 0.5 | ppmquant 256
Ppmtopgm >! ¢olorEdit.pgm

Ppmquant: making histogram...

PPmquant: 463 colors found

PPequant: choosing 256 colors

PPmquant: mapping image to new colors...

% xwd >! xterm.xbm

T cat Xterm.ppm | xwdtopnm |

xwﬁ:opn-: writing PPM file

L)

PPutopgm | pnmtops >! xterm.ps

National Aeronautics and Space Administration
Langley Research Center e Hampton, Virginia 23681-0001

) o
w | ®
R o @
O DOV wn ™
e M N
I Xt e m
[l S Ta N § M
> 0 C Q
1 Z2D (]
o~
= g Ve
- ; ~
? [02)
(L]
Irc
LY
[- A
u. < @
Q w
(VT]
wWQwo
- & ol
[20 - ¢
o > O
rw e
W QO ad o=
Tx OO
- ZC
VUL L
[V, TN |
o~ W
Car 0
n g g
-z " n
Qv b= I O
~—4 Z & W
| W~
O x x
O Wwa Land
t =0
gD dW Y
VA Ul g
ET>ZC
Z20WWwe
wURQ WY

Proceedings of a workshop sponsored by the

National Aeronautics and Space Administration,

I ———

Washington, D.C., and held at
Langley Research Center, Hampton, Virginia
June 15-16, 1994

\

October 1994

INTRODUCTION

On June 15 - 16, 1994, the Computer Systems Technical Committee presented a workshop,
"The Role of Computers in LARC R&D", at NASA Langley Research Center. The objectives of
the 1994 Workshop were to inform the LARC community about the current software system and
software practices being used at LARC. To meet these objectives, there were talks presented by

members of the Langley community, Naval Surface Warfare Center, Old Dominion University
and Hampton University.

The workshop was organized in 10 sessions as follows:
Software Engineering
Software Engineering Standards, Methods, and CASE Tools
Solutions of Equations
Automatic Differentiation
Mosaic and the World Wide Web
Graphics & Image Processing
System Design and Integration
CAE Tools
Languages
Advanced Topics

This document is a compilation of the presentations given at the workshop. The

Conference was also videotaped and the videotapes are archived at the NASA Learning Resource
Center (804-864-2325).

Appreciation is expressed to the individuals that participated by presenting
and attending the workshop.

Norma Campbell, CSTC co-chair

PROCEEDINGS OF THE WORKSHOP ON ROLE OF COMPUTERS IN
LaRC RESEARCH AND DEVELOPMENT

INTRODUCTION ..ottt ettt b et s e et st re et eaeeetaeeneans i
PARTICIPANTS ..ottt ettt et eeneaenee e \%
LaRC COMPUTER SYSTEMS TECHNICAL COMMITTEE.........ccccoovviieiniiennn. viii
SESSION | Opening SESSION ..c.cuuvriviiiiiiiiieiiieiiireeairessitrteesiaeeesssereessneeasaeesereeeeeaneesens 1
- Chaired by Jerry H. Tucker
1.1 RTG Perspectives on Computing at LaRCcocoeviiiiiiiiiiiicen, 2
- Doug Dwoyer
1.2 1OG Perspectives on Computing at Langley............ccccooeviviviiiveennene. 10
- Frank Allario
SESSION 2 Software ENgINEeringcccoveeiiiiiieeiiiieicie et 20

- Chaired by Susan J. Voigt

2.1 Software Engineering from a Langley Perspective
- Susan Voigt
2.2 Panel on Perspectives on Software Development................ccocooeveveeenennn. 43
- Chuck Niles, Pam Rinsland, Pat Schuler,Peg Snyder, Tom Zang,
Brenda Zettervall

SESSION 3 Software Engineering Standards, Methods, and CASE Tools................... 67
- Chaired by Susan Voigt
3.1 Model-based Software Process Improvementccoeeeeveiieicnnrennennn. 68
- Brenda Zettervall
3.2 A Study of Software Standards Used in the Avionics Industry 85
- Kelly Hayhurst
3.3 A Software Tool for Dataflow Graph Schedulingc..cccooieimirnnnnnn. 106
- Robert Jones
3.4 Use of Software Through Pictures on CERES..................cooeiiiiiniiieenn, 114
- Troy Anselmo
SESSION 4 _Solutions of EQUAIONSc.cceteiiieiiiiienieieie e 129
- Chaired by Olaf Storaasli
4.1 Rapid Solution of Large-scale Systems Of Equationscccceeeenenee. 130
- Olaf Storaasli
4.2 Solution of Matrix Equations Using Sparse Techniquesccccceeenene. 147
-Majdi Baddourah
4.3 Equation Solvers for Distributed Memory Computersc.ccecevveeeenee. 156
- Olaf Storaashi
SESSION 5 Automatic Differentiationcccceouieieoiiiiiiiieriere e, 167

- Chaired by Olaf Storaasli

i

5.1 Applications of Automatic Differentiation in Computational Fluid

DYNAMICS .ot e 168
- Larry Green :
5.2 Automatic Differentiation for Design Sensitivity Analysis of
Structural Systems Using Multiple ProCeSSOISccvoveeereereeeeeren 181
- Duc Nguyen, Olaf Storaasli, Jiangning Qin and Ramzi Qamar
SESSION 6 Mosaic and the World Wide Web............oooveumuermeooooeoooo 212
- Chaired by Clyde R. Gumbert and John W. McManus
6.1 Introduction to the World Wide Web and Mosaicc.oveeveereveeerernn 213
-Jim Youngblood
6.2 Use of World Wide Web and NCSA Mosaic at Langley 224

-Michael Nelson

6.3 How To Use the WWW To Distribute Scientific & Technical
INformation (STc.oomiiieeeieeeeeeeee e 237
-Donna Roper

SESSION 7 Graphics and Image ProceSSingc.e.eeveeeeeresooeeeoeeeoeoooo. 246
- Chaired by David C. Banks
7.1 Image Tools for UNIXocooooiiiiiiiieeeee e 247
- David Banks
7.2 From Computer Images To Video Presentation: Enhancing
Technology Transfer ... 266
- Sheri Beam
7.3 Data Visualization and Animation Lab (DVAL) Overview 272
- Bill Von Ofenheim , Kathy Stacy
7.4 Data Visualization and Animation Lab: Applicationscoco.......... 292
- Kurt Severance and Mike Weisenborn
SESSION 8 Systemn Design and INt€@rationc.ecveeveureeeeeeeeeeeeeeeereeeeeeeeseeeen 316
- Chaired by Jerry H. Tucker
8.1 The Design Manager's Aid for Intelligent Decomposition DeMAID......... 317
- Jim Rogers
8.2 RDD-100 and the Systems Engineering Processc.cooeevveveeenenn.... 351
- Robert Averill
8.3 Computer Tools for Systems Engineering at LaRC............c..ccocovvernnn.... 377

- J. Milam Walters

8.4 A Distributed Computing Environment for Multidisciplinary Design

' FIDO Lot e e 385
- Robert Weston

8.5 An Overview of the Computer Aided Engineering and Design for

Electronics Laboratory CAEDE..............coooooviiieiiiieeeeeeeeeeeeeeeee 412
- Shelley Stover
8.6 The Software Engineering and/or Ada Lab (SEAL)...........cccccoevvvmennn... 429

- Robert Kudlinski

SESSION 9 CAE TOOLS wuvoiiieetieeee et eeee et 434
- Chaired by Carol D. Wieseman

9.1 Digital Control of Wind-Tunnel Models Using LabVIEW 435
- Sherwood T. Hoadley

iil

9.2 Electronic Engineering Notebook -A Software Environment for Research

Execution, Documentation, and Disseminationccecocoveveennnne., 443
- Dan Moerder

9.3 IDEASZ2 Computer Aided Engineering Software.............cccccoovviviinnnn... 470
- Pat Troutman

9.4 Matlab as a Robust Control Design Tool............cocoveeeeeiiiiiii, 485
- Irene Gregory

9.5 Simulation of the Coupled Multi- Spacecraft Control Testbed at The
Marshall Space Flight Center..............ccooiiiiiiiiiniiie, 497

- Dave Ghosh, and Raymond C. Montgomery

SESSION 10 Languages

- Chaired by Robert F. ESEEScc.ecoiriiiiiiiiiiiiiiie ettt 518

10.1 Object Oriented Numerical Computing in C++.......cccoooiiiiiiiiiiiieiene, 519
- John Van Rosendale

10.2 Hardware Description Languagescc.oceveviivveeieinee o 536
- Jerry H. Tucker

10.3 High Performance FORTRAN........c..ccoiiiiiiiiiiiiececceeeeeeeee 546

- Piyush Mehrotra

SESSION 1! Advanced TOPICSc.eovevieriiriiiiieiiceeeee ettt 562
- Chaired by Susan Voigt
11.1 Current research activities at the NASA-sponsored Illinois
Computing Laboratory of Aerospace Systems and Software 563
- Kathryn Smith
11.2 Epistemology, SoftwareEngineering, and Formal Methods 570

- C. Michael Holloway

PARTICIPANTS

Frank Allario

Mail Stop 157

NASA Langley Research Center
Hampton, VA 23681-0001

Troy Anselmo

Science Applications Int., Corp.
Mail Stop 927

NASA Langley Research Center
Hampton, VA 23681-0001

Robert Averill

Mail Stop 430

NASA Langley Research Center
Hampton, VA 23681-0001

Majdi Baddourah

Lockheed Engineering & Sciences Co.

Mail Stop 240
NASA Langley Research Center
Hampton, VA 23681-0001

David C. Banks

ICASE

Mail Stop 132C

NASA Langley Research Center
Hampton, VA 23681-0001

Sherilee F. Beam

Computer Sciences Corporation
Mail Stop 157B

NASA Langley Research Center
Hampton, VA 23681-0001

Douglas L. Dwoyer

Mail Stop 105

NASA Langley Research Center
Hampton, VA 23681-0001

Robert F. Estes

Mail Stop 288

NASA Langley Research Center
Hampton, VA 23681-0001

Dave Ghosh

¢/o Ray Montgomery

Mail Stop 161

NASA Langley Research Center
Hampton, VA 23681-0001

Larry Green

Mail Stop 159

NASA Langley Research Center
Hampton, VA 23681-0001

Irene Gregory

Mail Stop 489

NASA Langley Research Center
Hampton, VA 23681-0001

Clyde R. Gumbert

Mail Stop 159

NASA Langley Research Center
Hampton, VA 23681-0001

Kelly Hayhurst

Mail Stop 130

NASA Langley Research Center
Hampton, VA 23681-0001

Sherwood T. Hoadley

Mail Stop 340

NASA Langley Research Center
Hampton, VA 23681-0001

C. Michael Holloway

Mail Stop 130

NASA Langley Research Center
Hampton, VA 23681-0001

Robert Jones

Mail Stop 473

NASA Langley Research Center
Hampton, VA 23681-0001

Robert Kudlinski

Mail Stop 157

NASA Langley Research Center
Hampton, VA 23681-0001

John W. McManus

Mail Stop 125B

NASA Langley Research Center
Hampton, VA 23681-0001

Piyush Mehrotra

ICASE

Mail Stop 132C

NASA Langley Research Center
Hampton, VA 23681-0001

Dan Moerder

Mail Stop 161

NASA Langley Research Center
Hampton, VA 23681-0001

Raymond C. Montgomery

Mail Stop 161

NASA Langley Research Center
Hampton, VA 23681-0001

Michael Nelson

Mail Stop 157A

NASA Langley Research Center
Hampton, VA 23681-0001

Duc Nguyen
Old Dominion University
c/o Olaf Storaasli

Chuck Niles

Mail Stop 442

NASA Langley Research Center
Hampton, VA 23681-0001

Pam Rinsland

Mail Stop 472

NASA Langley Research Center
Hampton, VA 23681-0001

Jim Rogers

Mail Stop 246

NASA Langley Research Center
Hampton, VA 23681-0001

Donna Roper

Mail Stop 444

NASA Langley Research Center
Hampton, VA 23681-0001

Pat Schuler

Mail Stop 125A

NASA Langley Research Center
Hampton, VA 23681-0001

Kurt Severance

Mail Stop 125A

NASA Langley Research Center
Hampton, VA 23681-0001

Kathryn Smith

Mail Stop 478

NASA Langley Research Center
Hampton, VA 23681-0001

Vi

Peg Snyder , retired

Mail Stop 111

NASA Langley Research Center
Hampton, VA 23681-0001

Kathy Stacy

Mail Stop 125A

NASA Langley Research Center
Hampton, VA 23681-0001

Olaf Storaasli

Mail Stop 240

NASA Langley Research Center
Hampton, VA 23681-0001

Shelley Stover

Mail Stop 488 '

NASA Langley Research Center
Hampton, VA 23681-0001

Pat Troutman

Mail Stop 288

NASA Langley Research Center
Hampton, VA 23681-0001

Jerry H. Tucker

Mail Stop 488

NASA Langley Research Center
Hampton, VA 23681-0001

Susan J. Voigt

Mail Stop 288

NASA Langley Research Center
Hampton, VA 23681-0001

John Van Rosendale

ICASE

Mail Stop 132C

NASA Langley Research Center
Hampton, VA 23681-0001

Bill Von Ofenheim

MS 125A

NASA Langley Research Center
Hampton, VA 23681-0001

J. Milam Walters

Mail Stop 430

NASA Langley Research Center
Hampton, VA 23681-0001

Mike Weisenborn

Mail Stop 125A

NASA Langley Research Center
Hampton, VA 23681-0001

Robert Weston

Mail Stop 159

NASA Langley Research Center
Hampton, VA 23681-0001

Carol D. Wieseman

Mail Stop 340

NASA Langley Research Center
Hampton, VA 23681

Jim Youngblood

Lockheed Engineering & Sciences Co.
Mail Stop 904

NASA Langley Research Center
Hampton, VA 23681

Tom Zang

Mail Stop 159

NASA Langley Research Center
Hampton, VA 23681

Brenda Zettervall

Code 6000A1

Port Hueneme Division

Naval Surface Warfare Center
1920 Regulus Ave.

Virginia Beach, VA 23461-2097

vil

LaRC COMPUTER SYSTEMS TECHNICAL COMMITTEE

The LaRC Computer Systems Technical committee was established in 1991 by the Chief
Scientist of Langley Research Center, Michael F. Card. The goal of this Committee is to foster
the exchange of technical information between the various groups who are involved in R&D on
computer systems. The technical committee endeavors to provide workshops, luncheon speakers
(brown bag seminars), and outside experts. The technical committee strives to provide technical

interchange on computer systems.

The current membership of the CSTC consists of the following personnel:

TUCKER, JERRY H, chairman
Mail Stop 488
NASA Langley Research Center
Hampton, VA 23681
Phone: 804 864-7342
email: J.H.Tucker@LaRC.nasa.gov

CAMPBELL, NORMA K, cochairman
Mail Stop 355
NASA Langley Research Center
Hampton, VA 23681
Phone: 804 864-1131
email: N.K.Campbell@LaRC.nasa.gov

WIESEMAN, CAROL D, secretary
Mail Stop 340
NASA Langley Research Center
Hampton, VA 23681
Phone: 804 864-2824
email: C.D.Wieseman@LaRC.nasa.gov

CARPENTER, CHUCK L
Mail Stop 125A
NASA Langley Research Center
Hampton, VA 23681
Phone: 804 864-8046
email: C.L.Carpenter@LaRC.nasa.gov

FOX, CHARLES H, JR
Mail Stop 361
NASA Langley Research Center
Hampton, VA 23681
Phone: 804 864-4906
email: C.H.Fox@LaRC.nasa.gov

GUMBERT, CLYDE R
Mail Stop 159
NASA Langley Research Center
Hampton, VA 23681
Phone: 804 864-2221
email: C.R.Gumbert@LaRC.nasa.gov

MCINTOSH, LEE T (TOM)
Mail Stop 236
NASA Langley Research Center
Hampton, VA 23681
Phone: 804 864-4676

MCMANUS, JOHN W
Mail Stop 125B
NASA Langley Research Center
Hampton, VA 23681
Phone: 804 864-4037
email: J.W.Mcmanus@LaRC.nasa.gov

RUGGLES, STEPHEN L
Mail Stop 473
NASA Langley Research Center
Hampton, VA 23681
Phone: 804 864-1515

TRUSSELL, PHILLIP T
Mail Stop 442
NASA Langley Research Center
Hampton, VA 23681
Phone: 804 864-6961
email: P.T.Trussell@LaRC.nasa.gov

viii

SESSION 1 Opening Session
Chaired by

Jerry H. Tucker

1.1 RTG Perspectives on Computing at LaRC - Doug Dwoyer

1.2 1OG Perspectives on Computing at Langley - Frank Allario

@ Langley Research Center
Research & Technology Group

RTG Perspectives on
Computing at LaRC

June 15, 1994

Doug Dwoyer

“Three technologies are revolutionizing
our world:

silicon chips,

light fibers, and

software”

Dr. John Mayo
President, Bell Labs

Langley Research Center
Research & Technology Graup

Two RTG Perspectives on
Computing at LaRC

* Impact on how we do our research
* Impact on what research we do

Langley Research Center
Research & Technology Group

Two RTG Perspectives on
Computing at LaRC

* Impact on what research we do

Langley Research Center
Research & Techmolugy Group

The Computing Universes at
Langley

- "-""9..
Central ,‘."J
Scientific ~
Computer ¢ Distributed %
Complex } Computing

ey

>" Facility
{ Dedicated
{ Computing
g

Business
omputing

Langley Research Center
Research & Technoiogy Group

‘aze e sae A’

Future Computing Universe of
Langley

?

Langley Research Center
Research & Tachnology Group

RTG ADP n-Team

* Membership: RTG division ADP managers &
at-large ADP personnel

* Role:

— Provide advice and consultation to RTG line management
on internal and external ADP issues and resource
requirements

— Represent the RTG's position as “ADP customer” to 10G
for long-range planning of ADP services

— Provide effective and cost-efficient planning,

implementation, operation, and upgrade of distributed
computing services within the RTG

* Audience: RTG line management & computer
users; ADP providers (ISD, ETTD)

Langley Research Center
Ressarch & Technology Group

Future Computing Universe of
Langley--Expected Outcomes

* Enable exploration of unknown
* Universal communication

* Research productivity

* Removal of distance

» Support conversion of information into
knowledge

* Fundamentally change our research
products?

Langley Research Center
Ressarch & Technology Group

Future Computing Universe of
Langley--Expected Properties

* Computational environment that serves
individual user needs

* Integrated infomation management capability

* Harmonious relationship of mini-
environments vs. unified environment

* Reuse of previously developed assets

» Software engineering standards and
techniques widely applied

Langley Research Center
Research & Technology Group

Two RTG Perspectives on
Computing at LaRC

* Impact on how we do our research

’ Langley Research Center
Reseaich & Technology Group

Impact on what research we do--
Transportation Research

* Requirement for transportation
— Impact of the revolutionizing technologies?

Langley Research Center
Ressarch & Technology Graup

Impact on what research we do--
Transportation Research

* Impact of three revolutionizing technologies
on aero and space transportation
- National Airspace System
— on-board computing
— cockpit automation
- design/manufacture/field support

* NASA impact not clear

— develop the technology and they will come doesn’t work
- 3rd generation research thinking required

Langley Research Center
Research & Technilugy Geoup

Impact on what research we do--
Atmospheric Science

* Creation and storage of more and more
information

* Conversion of vast storehouses of
information into knowledge

» Creative use of information technologies is
critical

Langley Research Center
Ressarch & Technokgy Grouwp

Impact on what research we do--
Systems Analysis

* Must utilize level of technology industry uses
to remain credible

Langley Research Center
Research & Technulogy Group

Concluding Remarks

* Future infomation technologies will have
profound effects on Langley

* We must learn how to positively take
advantage of them

Langley Research Center
Research & Tachnology Group

| INFORMATION SYSTEMS DIVISION I

ISD PERSPECTIVE ON ...
“ COMPUTING at Langley ”

Dr. Frank Allario

June 15, 1994

ISD’s PERSPECTIVE ON COMPUTING
@ Langley ...

* QUTLINE ...
—GENERAL OBSERVATIONS ON THE FOLLOWING >>>
» SUPERCOMPUTING WITHIN OA ...
» INFORMATION SERVICES ... “ What are they? ”
» RAPID PROTOTYPING ... “ The wave of the future! ”

—1SD STRATEGIC THRUSTS as presented to the ...
» LCUC ...
» RTG/ADP “n” Team ...

—SOME KEY ISD ACCOMPLISHMENTS as they relate to
NASA Langley and National priorities ...

- SUMMARY COMMENTS on the future of Computing ...

10

ISD’s PERSPECTIVE ON COMPUTING
@ Langley ...

%

* GENERAL OBSERVATIONS ON THE FOLLOWING >>>

» SUPERCOMPUTING WITHIN OA ...

- Langley and the other OA Centers will depend more upon a Centralized
ske for providing high capacity, mass storage capability ...

- Langley will depend exclusively upon its high bandwidth, networking
capabliity to communicate with the outside world, and provide
supercomputing capability for computationally intensive calculations ...

~ A “clustered architecture” will be developed at Langley & other OA
Centers to handle mid-range computational requirements ...

— This “clustered architecture” should become a joint venture between
I0G/1SD, RTG / ADP and RTG /HPCCP ...

- Langley will eventually outsource all large scale computing ...
~ ISD will focus its Human Resources upon other Information Services ...

ISD’s PERSPECTIVE ON COMPUTING
@ Langley ...

%

* SUPERCOMPUTING WITHIN OA & Langley ...

—LANGLEY /ISD STRENGTHS FOR OUR CUSTOMERS
INCLUDE THE FOLLOWING ...

» A GOOD GRASP ON MASS STORAGE

TECHNOLOGY ...
» A LEAD IN HIGH BANDWIDTH NETWORKING
TECHN Y ..

» A GOOD HANDLE ON NATIONAL & AGENCY
GOALS IN THE MASSIVELY PARALLEL
PROCESSING [MPP] TECHNOLOGY ...

* LANGLEY WILL RECEIVE AN IBM, SP-2 IN AUGUST 1994

FOR INTERNAL EVALUATION & CONSULTATION TO
INDUSTRY ...

11

ISD’s PERSPECTIVE ON COMPUTING
@ Langley ...

* SUPERCOMPUTING WITHIN OA & LANGLEY ...

- While you and | sleep silently at night, we have a corps
of system engineers and technicians who keep our
facilities “purring,” in our Central Scientific site, our
Communications Systems, our Specialized
Laboratories, and our Flight Simulation Facilities ...

—During severe storms, power outages, and hurricanes
our corps of contractors and civil servants keep the
vitality of the Center’s research mission alive, through
dedicated engineering support ...

— As a new boy on the block in computing, | am taking
the time to say ... “ Thanks from all of us !”

ISD’s PERSPECTIVE ON COMPUTING
@ Langley ...

* INFORMATION SERVICES ... “ What are they? ”
- SCIENTIFIC SUPPORT SERVICES ...
» SPECIALIZED LABORATORIES ...
* EOS / DAAC ..
* FLIGHT SIMULATION ...
* GEOLAB ...
* DVAL ...
« SEAL ...

» SPECIALIZED INFORMATION SERVICES ...
* DATA MANAGEMENT ARCHITECTURES ...
« SOFTWARE ENGINEERING ...
* HIGH BANDWIDTH, NETWORKING SYSTEMS ...
* TRAINING IN INFORMATION SYSTEMS & TECHNOLOGY...

12

ISD’s PERSPECTIVE ON COMPUTING
@ Langley ...

%

* INFORMATION SERVICES ... “ What are they? ”

—~ TECHNICAL SUPPORT SERVICES ...
» MANAGEMENT INFORMATION SYSTEMS ...
» ELECTRONIC COMMUNICATION SYSTEMS ...
» BUSINESS ACCOUNTING SYSTEMS ...
» COMPUTER SECURITY SYSTEMS ...
» OFFICE MANAGEMENT TRAINING ...
» SECURE NETWORKING SYSTEMS ...
» HELP DESKS & TRAINING SERVICES ...
» VOICE / VIDEO / VISUAL TECHNICAL TOOLS ...

ISD’s PERSPECTIVE ON COMPUTING
@ Langley ...

%

* RAPID PROTOTYPING ...
“ The wave of the future! ”
—1 AM ENCOURAGING ALL PERSONNEL WITHIN ISD,
where it is reasonable, TO CONDUCT RAPID

PROTOTYPING TO INSURE WE PROVIDE OUR
CUSTOMERS FULL UNDERSTANDING OF THE ...

—COSTS OF DOING BUSINESS .

“What you really need, versus what we as a National
Laboratory, really can afford!”

-1 WOULD APPRECIATE YOUR THOUGHTS ON E-Mail,
WHICH COULD HELP ISD UNDERSTAND THIS
CONCEPT ...

13

ISD’s PERSPECTIVE ON COMPUTING
@ Langley ...

e ________———_ — ———

-SUMMARY COMMENTS, on the future of
Computing @ Langley ...

» THE RESEARCH PROCESS WILL CHANGE AND
WITH THAT CHANGE THE ROLE OF DVAL WILL
BECOME INDISPENSIBLE TO THE RESEARCH
PROCESS ... {ISD + STID + ETTD = ONE }!

» Langley / Ames / Lewis will consolidate NASA
resources in specialized, scientific services for our
researchers + industry partners and make them
available nationally to the Aeronautics
community ...

» Langley will lead the software engineering
process for applications to Aeronautics ...

ISD’s PERSPECTIVE ON COMPUTING
@ Langley ...

L —

—-SUMMARY COMMENTS on the future of
Computing @ Langley ...
» THE CENTRAL SCIENTIFIC COMPUTER
COMPLEXES, WILL BE CONSOLIDATED INTO ...

» LANGLEY WILL LEAD OA CENTERS IN THIS
CONCEPT ...

» OUR FUTURE IS BRIGHT, BUT WE MUST
ESTABLISH SCIENTIFIC PRIORITIES WITHIN OUR
SCIENTIFIC CORPS, IN AERONAUTICS + SPACE
SCIENCES COMMUNITIES ...

» OR ELSE ...

14

v

ISD was formed through the merger of ACD, BDSD, and IRMO to provide
a focal point for information services at LaRC

Our mission is to lead the application of advanced information systems

technologies that will improve the productivity and quality of the LaRC’s
processes and products

The role of ISD is changing:
» Decreasing emphasis on providing central computing resources
» Increasing services and technologies to make researchers,

managers, and distributed computing users more productive and
effective

Major “business areas” include communications, advanced technology
computing, integrated computing environment, information resources
management, management information systems, simulation systems,
data management, visualization & analysis, and software engineering

Information Systems Division

ISD Planning

@ Langley requirements (known and anticipated) and perceived
trends were used to identify the major “business areas”

e These introductory presentations begin a continuous process of
customer interactions to help determine ISD priorities,
expectations, and future directions

® [SD is committed to customer satisfaction and we must work
together to develop realistic expectations that provide exceptional
service in a continually changing environment
» Growing demand for information systems and services
» Decreasing budgets and manpower
» Rapidly evolving technologies

We can do anything, but we can’t do everything

|

15

; Information Systems Division

Communications

Provide Center-wide coordinated, reliable, state-of-the-art,
and cost effective voice, data, and video communication
networks and services

® Integrate evolving advanced network technology, such as FDDI
and ATM, to accommodate high performance distributed
computing at LaRC

® Provide enhanced user access to the National Information
Superhighway and world-wide information resources

Lead deployment of portable and desktop video conferencing

¢ Lead the Center-wide E-mail integration initiative

Information Systems Division

Advanced Technology Computing

Provide effective scientific computing resources through
implementation and support of evolving hardware and
system software technology

@ Utilize centralized, homogeneous workstation clusters to meet
medium-scale computing requirements

e Employ local and remote vector supercomputers to meet large-
scale computing requirements

e Evaluate high performance scaleable processing technology

e Implement Distributed Mass Storage System (DMSS) to meet
rapidly increasing on-line and archival requirements; evaluate
emerging mass storage technologies

® Apply tools, performance analyses, and code enhancements to
improve the utilization of computing resources

16

Information Systems Division

Integrated Computing Environment

Lead the integration of central and distributed computing
resources into a unified, cost-effective computing and
communications environment

® Develop a uniform user environment and global file system

® Improve coordination and cost-effectiveness of system
administration

Lead Center-wide implementation of “Electronic Office” hardware,
software, communications, and services

Implement networked distribution and installation of common
software packages

Lead architectural design efforts to implement integrated Code R
computing environment

Information Systems Division

Information Resources Management

Lead in the planning, acquisition, implementation and
efficient management of Langley's information processing
resources throughout their life-cycle

Develop policies that satisfy ADP legislation and provide essential
oversight with a minimum of “control”

@ Implement the LaRC Computer Security Program

e Contain costs through strategic planning and consolidation of
distributed ADP requirements
» Resource reutilization and sharing
» Hardware and software mass-buys, site licenses,
maintenance, and services
» Centerwide electronic bulletin board "NewsNET" and user
services

17

Information Systems Division

Management Information Systems

Develop and maintain efficient and effective information
systems for business and administrative functions

® Perform software development, maintenance, operations, and data
management for business applications, such as payroll, T&A, and
property management

® Perform business process analysis, personal computing
technology assessment, and training

o Develop Center and Headquarters management information
systems

® Implement Agency standard systems and integrate with LaRC
unique systems

‘ Information Systems Division I

’ Simulation Systems

Provide state-of-art, cost-effective, simulation capabilities to
support LaRC's research and focused technology programs

o Development and operation of simulation systems to accomplish
research program goals
» Real-Time Computer Systems (FSCS/ARTSS)
» Advanced Visual Systems (ACGVWIDE, SGI/ONYX)
» Flight Decks (HSR, B737/757) and Motion Platforms (CMF)

e Rapid and cost-effective development of real-time models and software
applications
» Vehicles and Vehicle Control Systems (HSR, HARV, B737/757)
» Flight Management Systems (FMC, Nav)
» Atmospheric models (Windshears, Wake Vortex)

® Development and implementation of new technology
» Improve efficiency of software and hardware development processes
» Provide new capabilities necessary to conduct research programs

18

Information Systems Division
I Scientific Data Management, Analysis & Visualization ’

Apply advanced methods and tools to effectively manage and
utilize computational and experimental research data

e Develop effective data management techniques to support the rapidly
changing research environment

» Greatly Increasing data volume and multi-disciplinary communities
» On-line multimedia access and technology transfer

e Data Visualization and Animation Lab (DVAL) develops and applies
advanced techniques to visualize, analyze, and present scientific data

® Geometry Modeling and Grid Generation (GEOLAB) provides a Center
resource to effectively meet the large and varied grid geometry
requirements in scientific computation

e High-end, production input and output devices, such as the LISAR
Digitizing System and large format color plotters

e LaRC’s EOSDIS Distributed Active Archive Center is a pathfinder for
Worldwide information dissemination

Information Systems Division

Software Engineering

Improve the cost-effectiveness, quality, and performance of
software developed at LaRC

® Implement a modern software development process that
optimizes cost, schedule, system performance and reliability
through the Software Engineering and(or) Ada Lab (SEAL)

e Develop mission critical software systems for LaRC space and
avionics flight projects

® Meet increasing demand to apply software engineering to other
LaRC software development efforts
» Applications include NTF DAS, HSR, and TAP
» Perform training, consultation, and information dissemination
services
» Reverse engineer research software products (i.e., CFD)
before transfer to customers

19

SESSION 2 Software Engineering
Chaired by

Susan J. Voigt

2.1 Software Engineering from a Langley Perspective - Susan Voigt

2.2 Panel on Perspectives on Software Development- Chuck Niles, Pam Rinsland, Pat
Schuler,Peg Snyder, Tom Zang, Brenda Zettervall

20

Isco g0 /10037 N95- 16454

SOFTWARE ENGINEERING FROM A LANGLEY PERSPECTIVE
by Susan Voigt /) o7

This presentation is intended to provide a brief introduction to software engineering to set .

the stage for the panel discussion and some of the workshop presentations.

The talk is organized into four sections, beginning with the question "What is Software
Engineering?" followed by a brief history of the progression of software engineering at
LaRC in the context of an expanding computing environment. Several basic concepts and
terms are introduced, including software development life cycles and maturity levels.
Finally, some comments are offered on what software engineering means for LaRC and
where to find more information.

In an article in the ACM Computing Surveys in 1978 (Vol. 10, No. 2, p. 197), Marvin
Zelkowitz defined software engineering as the "process of creating software systems."
(Note: ACM is the Association for Computing Machinery.) The IEEE Standard 610.12-
1990 (Standard Glossary of Software Engineering Terminology) has a widely accepted
definition that effectively is the application of an engineering approach to software.

The term "software engineering” was used at NATO conferences in 1968 and 1969, but
became commonplace in 1975 when the first national conference (which became
international at the second) was held in Washington, D.C. In that same year, the IEEE
began publishing the journal: IEEE Transactions on Software Engineerin g. NASA started
funding software engineering research as part of the Computer Science Research Program
in the Office of Aeronautics and Space Technology in 1983. The Department of Defense
was also concerned with "the software problem" in this time frame, and in 1984 the
Software Engineering Institute was established at the Camegie Mellon University.

NASA's Office of Safety and Mission Assurance (Code Q) established the NASA Software
Engineering Program in 1991, with funding for and active participation from LaRC.

Just as software engineering was developing, our computing environment was becoming
more dispersed. In the 1960s, computing was done by computing professionals in a
“closed shop" environment. However, by the 1970s, FORTRAN was uscd by researchers
across the Center, and they had access to the centrally located computer facility by using the
“green tub” service for pick up and delivery of punched cards and printed output (also
called computer listings). In the mid-1970s, microprocessors and time sharing came to
LaRC, providing remote computing capability. Computing expanded in the 1980s with
distributed systems, personal computers, and data acquisition and/or control systems in
many facilities. The 1990s has brought even more powerful workstations and networked
systems. This changing environment has decentralized the computing and software
development at the Center, so that software is now created in many organizations, with
little coordination or collaboration.

One of the fundamental concepts in software engineering is that of life cycle. The life cycle
is a way to capture the schedule and discipline of key activities, reviews (such as system
design, requirements review and design review), and deliverable items at specific points in
time. The Department of Defense has identified three "program strategies” in their recent
standards, that illustrate classic software life cycles: waterfall, incremental and spiral.

The Grand Design strategy assumes a complete definition of the requirements prior to
design. The waterfall life cycle includes the development phases: requirements analysis,
design, coding, test and integration and finally operations and maintenance. As each phase
is completed, products are delivered that support the next phase.

21

The Incremental strategy is also called "preplanned product improvement.”. The user
needs and system requirements are defined followed by a phased development with several
releases or system builds. Each phase includes the typical steps in the waterfall process.
Experience with early releases in the incremental approach can provide refinements for
subsequent releases, along with the new capabilities planned.

The Evolutionary strategy is based upon Barry Boehm's spiral model (described in ACM
Software Engineering Notes, Vol. 11, No. 4, Aug. 1986, pp. 14-24; and IEEE Computer,
May 1988, pp. 61-72). This approach encourages consideration of risks, constraints and
alternatives. The software development occurs in the third quadrant of the spiral, and is
similar to the incremental development.

The Software Productivity Consortium (Lockheed, one of our support service contractors,
is a member company) has extended the spiral model into the Evolutionary Spiral Process
(ESP) Model with extensive training and guidebook materials available to SPC members
(and to NASA, as a Lockheed customer).

The Software Engineering Institute (SEI) has defined the Capability Maturity Model
(CMM) that can be used to identify how an organization can improve the maturity of its
software process. The CMM has five levels, from initial to optimizing. Watts Humphrey,
SEI fellow, is considered the author of the CMM. We do have copies of SEI provided
documentation on the CMM in the Space Systems and Concepts Division. The lowest level
(1) is when software development is informal and each job is only as good as the individual
software developer. This is the stage when good software results from heroic effort.

Level 2, called "repeatable,” is more intuitive, where there are some common practices, but
problems invariably arise when something new is introduced into the process. The focus at
level 2 is on project management. The "defined level” (3) is qualitative and focused on the
engineering process. The process has been written down, and the organization has
accepted it as common practice. Training in the process is available, providing continuity
with personnel turnover, and the staff meets regularly to discuss improvements. The
quantitative or "managed level" (4) has measures in place to track productivity. The focus
is on both product and process quality. The process is understood and managed so that
bottlenecks can be identified and automated tools can implement parts of the process to
reduce human error. When an organization has achieved the "optimizing level" (5),
detailed metrics on the process are collected, problems can be anticipated, there is constant
process improvement, and new technology can be infused. A level 5 organization is
practicing TQM in software development to the full extent. At the present time, most
organizations are at level 1 or 2.

The SPA and SCE are two assessment methods defined by the SEI. SPA, the Software
Process Assessment, is used by an organization to assess their own actual process maturity
and develop a software process improvement strategy. It is only for internal use. SCE, the
Software Capability Evaluation, is more like an audit. It is used to gather information on
the software process maturity of organizations that might be competing for a software task.
Several government agencies are using SCE's in their source selection process. Our
panelist from the Naval Surface Warfare Center has been trained in the SCE, and she will
share some insights on this later. An analogy to compare the SPA and SCE: An
assessment is like having a friend or relative help you prepare your income taxes (it's
internal), whereas an evaluation is like having the IRS do an audit of your taxes.

Some other basic concepts of software engineering can be introduced by defining some
jargon. CASE (computer aided software engineering) is a generic term to describe tools
and environments that provide automated support for software development. The DOD has
used CSCI (computer software configuration item) to describe major software modules

22

(that are kept under configuration control). Submodules are called Computer Software
Components (CSC) and often compilation units are called Computer Software Units
(CSU). CM stands for configuration management, a process for identifying and for
controlling release and change of software items. Object Oriented Design (OOD) and object
oriented programming are an alternative approach to procedural-oriented software
architecture, treating programs and data as objects. IV&V is Independent Verification and
Validation, the testing of software functionality and validation against requirements
performed by a team separate from the developers. Software Quality Assurance (SQA) is
an activity performed throughout the life cycle to assure that requirements analysis, design,
code, and the resulting product satisfy the software requirements.

Additional jargon includes SMAP, which was the Software Management and Assurance
Program led by the NASA Office of the Chief Engineer and later the Office of Safety,
Reliability, Maintainability, and Quality Assurance (Code Q) in the 1980s. The SMAP
team included representatives from all NASA Centers, and they helped define the NASA
software documentation standards that have evolved to NASA STD-2100-91. The SMAP
has been replaced with the Software Engineering Program in the current Code Q, Office of
Safety and Mission Assurance. DID stands for Data Item Description, the Department of
Defense (DOD) term used for software documentation format, instructions and outline.
For example, the DOD-STD-2167A describing the current Defense System Software
Development standard, contains at least 16 DIDs. The DOD program Software Technology
for Adaptable, Reliable Systems, called STARS, has been active for over 10 years, and is
the focus of considerable effort in areas including Software Engineering Environment
(SEE) and Software Reuse. Research into reusing software assets (e.g., design and code
segments) has included identification of domains or classes of application areas with
common aspects where reuse makes sense.

Since the daily work at LaRC relies on software more and more, and as more emphasis is
placed on the transfer of technology (which includes our software products), there is a need
to pay more attention to the engineering of our software. There are several resources
available to people at the Center, including the Software Engineering and/or Ada
Laboratory (SEAL) in the Information Systems Division, an Inter-Group N-Team on
Software Productivity, Quality, and Reliability led by Robert Estes, and Internet access to
many information resources. The recently formed Hampton Roads Software Process
Improvement Network (HRSPIN) offers additional opportunity for professional
development and information exchange with individuals from government, industry and
academia interested in software improvement. The Technical Library (as well as many
individuals) have several of the software journals of particular value to the software
engineering specialist.

There are several standards that also are applicable, and these can prove useful in guiding a
software process. Experienced software engineers at NASA Langley are willin g to share
their knowledge, and the SPQR N-Team provides them an opportunity to network and
work together to improve the quality of software at the Center.

Software engineering techniques can improve the software products developed for and by
LaRC. The panel represents several perspectives on software development, and these
experienced software developers and managers are willing share some of their views on
where we are and where we should be going.

23

¥661 ‘GL aunp

doysyioM @By Hye1 ul siandwo) Jo 3|0y ayl
0} pajuadsaid

HASVS ‘Uoisinlg s1daouo) pue swalsAg aoeds
1IBIOA °f uesns

Aq

ONIHIANIONT 3HVML40S

24

¢o4deT 10§ ueauwl syl saop jeyMm
s1daouon diseg awog 0} uoloNpPoJU|
aAI}0adsiad Hye] wod} AloisIH jaug v

¢ Burisauibug aitem)os si 1eym

auIINO

25

0661-¢1L°019 PIS 334l
(asemyos 0}

yoeoidde Huriaauibua jo uoneaijdde ayy “a'1)

L 9J1eM]JOS JO ddueudluiew pue ‘uoljesado

qYuawdojanap ayj o} yoeoudde ajqenijuenb
‘pauljdiosip ‘onewsalsAs jo uoneaidde ayy,, -

(sAaning Bunndwo) g/61 ‘ZHMOY|9Z)
.SwidlsAs atemyos Huneald jo ssadold,, -

¢ Burieauibug aiemyjos sj ey

26

weiboid Burssauibug atemyos pauels O apod YSYN

aoa Aq paysijqeis3 anyisu| bunssuibuz a1emyos/NIND

(yusuodwos Buudauibug aiemyos Yim)
papun} weiboid Yysieasay aouaiosg 9ndwo) YSYN

pauels jeusnol Buieauibug asemyjos uo suoljoesueldj 3331

Buiieauibug atemyos uo adualsajuo) (1,1uj) jeuonen isii4

anboa ul Buiwmweibold painjonins

S30U313juU0) OLVYN le pasn ,Buiiesuibug alemyjos,,

1661 °

v861 -

£861 °

GL6) °

€.61 -

69/8961 °

aAIloadsIad HHe - A1o)sIH jaug v

27

SWA)SAS [ENLIA ‘SUOIIRISHIOM PONJOMISN - S066L

Saljlj1oe}
pajewolne pue ‘snd ‘swalsAs painqiiisiq - so861

sqe ul s10Ss920.do4dI
Aujioe4 jenua) ui burieys awil - sgL-pIN

(doys uadp) aoialas qnj uaalx
slayateasal Aq pasn NYHLHOS - S0.61

(doys paso|)
goVv ui auop buiwmwesbold ‘sg. Aj1ea @ sQ961 Uj

e 1y bunindwon 0 ssaiboid

28

§S8900.d [edldS AHVNOILNTOAZ -

juawdojanag paseyd pauuejdaid TVLINIW3IHONI °

[[e}191eM NOIS3A ANVHO -

so|qeIoAI|a(pUB ‘SMaINdY A3)] ‘SalliAIoY JO a|npayIs

Ss3|0A9) 9}17 a1em)os

29

(

edueualule
p suopesado

Y

uoneibau|
B isaL

/m -)
/m ao)

sisAjeuy
sjuawalinbay

)

[lej191e

30

e e A

‘Bajul g i1sal - 1
9p0D -0

ubiseg -a
sjuswaiinbay - 4

Loseslay A L /o /a /]

SUEITEYRIT

31

1onpo.td |aAs)-}xau

A1oA ‘dojaneq ¢ seseyd }xau ue|d ‘y
JWwo)H
sda)s
ybnouayj ssaisboid
S9Aljeula)je ajen|eAy S}ulel}suod ‘saAljeuls)e
S)SIl 8Ajosal ‘AJusp| ‘g ‘saAl}oslqo sulwislaq |
Y

I9POINl 9]2A23}17 Jelidg s,wyaog

32

suonenjea3 Ayjiqede) aiemyos 308
JUBWISSASSY SS920.d 31eMY0S VdS
|]apon Ayunjey Ayijiqeded WIND
AlsJiaAiun uojdy atbause) e
anysuy buridauibug aiemyos [3S
[9POIN SS920.4d |edids AleuonlnjoAng dS3
(Auedwiod Jaquiaw e siI pasayxya07)
WINI}JIOSUO) ANIAIIONPO.Id 91EM}IOS HdS

S|9POIN SS990.1d 91eM}joS

33

Jetwioyy]

eAllinu| P|qeleaday

(€)

eAljellienO pauljeq

aAneuend

S1dAd T ALIHNLVYIN JAI

34

Ausianmun uojiep aibaused
ansuy buusauibug aremyos W

— =
jeljiu]
S90J3H L
— jbw sjuawalnbay
16w uoneinbyuod asemyos
soueiansse Ajjenb aiemyjos
16w joeHUOOGNS BIBMYOS 9|qejeaday
Bunjoesy 109foid aremyos Z
Bujuueyd 1o9foid asemyog | Iuswabeuew joafoid
bW aJemijos pajeibajuj
Bunsauibua Jonpoud aiemyos
uopeuipiood dnosbiajuj
weisboid Bujues) pauyaq
SMaIA3J Joad m
‘ujap ssaosoid uonezjuebap d6 6
snooy ssaooad uoneziuebip ssad0.d bupsaulbug
juswabeuew Ayjend _uwmm:m_a
sisAjeue Ayjenb b
>~__m30) puE JuswaInseaw ssad0id ssso0.d pue jonpoid
>u_>_u.o=Uo id juswabeuew abueys ssad0id buiziwundo
) uoneaouu; Abojouyda} juawanoiduwy G
_ uonuaaaid Joajeg | sssd0id snonupuod
}nsay sealy ssadolid Ad) sndo4 EXER]

PO Aumyepy Anpiqede)

35

"ONIdOO LHVLS NOA
40 1S34H FHL ANV d33N A3HL
LVHM 1NO dNI4 ANV dn 09 T1.1

uonezIues.a() [9Ad] [eIIUJ UR JO SISLIdJIBIRY))

36

saxe)
inoK jo Jipne ue op SH| ayl Bulaey 81| siuonenjea3 uy @

saxe} awoaoui 1nok atedaid noA
djay o1 mej-ui-1ayro.aq 1nok Bupise al| S| JUBLISSISSY UV @

Agojeuy uy

37

aouelnssy Aujenp alempyos vosSiovo -

uoljepijeA pue uoljedyiiaA Juapuadapuj ABAlL -
ubisaqg pajualiQ 199[qo aoo -
Juswabeuepy uoneinbiyuon Ny -

Hun/uauodwon/way|
uoneinbiyuo) asemyos PINdwo)d NSH/OSI/IDSD -

Buriaauibug aisem)os papiy J9indwon Jsvy) -

uob.iep Burieauibuzg aiem)jos awos

38

ealy uoinedljddy 1o Alobaje) ulewoqg -

sjonpo.d aiemyos padojanap
Aisnoinaid jo uonesodioou] asnay aiemyos -

juswuoJiaug Bunidaulbug astemyos 338 -

(yuasaud - y861) weiboid swalsAg s|qel|ay
‘a|qeidepy 10} ABojouyda] asemyos qogq SHVIS -

(jewio4 Jusawnodo(q) uondiosaq wal ejeq aia -

(soge6l) weiboid asueinssy
pue juswabeuep aiemyos YSYN dVINS

uob.ep Bulidauibug aiem)jos aIon

39

(" ‘140SHIS WOV ‘IS uo suel] 333| ‘@semyos 333|) sjeunor -

(>4oMioN
juawanoldw ssao0.1d atemyos speoy uojdweH) NIdSHH -

uonewoju] MMM/OIesol -
weay-N HOJS -
(qe1 epy » Bunesuibuz atsemyos) 1v3as/asl -

40

a|qge|ieAe aJe S32IN0SAY pue SIIHAIIOY |BI9ASS -
S9SBJ|9Y 9IBM)0S <= Shd04 J3jsuel] ABojouyosa] -

YIOM Ajleq ul aiem)os uo aduejjal buisealou) -

;oye 104 ueay siyL saoq 1leym

spiepuels 333) Auew .

Bueauibug swaisAs g66v-aLS-1IN -

00Q pue jusawdojaraqg alemyos 86v-aLlS-1IN -
A9 dJemyos walsAs asudgeq v.912-a1s-aoq -

sauljepiny Ajjenp aiemyos €-0006 OSI -
piepue}S YSVN V
piepuels walsAs Aujenp 1006 OSI °

piepuels uolejuswnoog atemyjos 001¢-ALS-VSVN -

S92.IN0SaY 3 ueo spiepuels

i weal-N Aujiqelay
pue ‘Ayjenp ‘AuAonpold alemyos Jye ayy uior

Jadeayo ‘uanaq ‘1aisey,, Jo uads
ay)} ui Ayjenb aisem)jos 1no anoiadwi 0] paau apn

odeT
1e }10M op sta3ulbug asem}os pasuaiiadxy

sjonpo.id aiem)jos
191199 10} Atessadsau si Hurtsauibug asemyos

AHVININNS

42

Summary of Panel on Perspectives on Software Development

The panel consisted of five NASA Langley employees representing different
application domains and a representative from the Naval Surface Warfare Center
in Virginia Beach, VA. Each panelist began with a short statement reflecting both
experiences and perspectives on software development. The panelists, their
application domain area, and organization were:

Chuck Niles Facilities Software, IOG

Pat Schuler Flight Software, IOG

Tom Zang Researcher Software, RTG and LCUC Chair
Pam Rinsland Embedded Systems Software, IOG

Peg Snyder Science Software, SASPG (retired)

Brenda Zettervall = Software Quality Improvement,
Naval Surface Warfare Center
Susan Voigt Moderator, SASPG

Chuck Niles is in the Electrical and Electronic Systems Branch in the Facilities
Systems Engineering Division of the Internal Operations Group. He has 15 years
of experience in software development for wind tunnel control systems, process
monitoring, and ground facilities communications on minicomputers and the
whole family of Intel microprocessors. He is responsible for software
configuration management for many wind tunnels at LaRC and has developed
documentation for all phases of software development. His opening remarks,
"Perspectives on Software Development,” are included following this section.

Pat Schuler is in the Advanced Computer Systems Branch in the Information
Systems Division of the Internal Operations Group. She began her Langley
career providing support for scientific research computer applications. She was
software manager for the first embedded systems (flight software) project in the
Software Engineering and Ada Laboratory (SEAL). Since the SEAL was formed,
she has been active in developing it as a center of excellence in software
engineering at LaRC, with support from the NASA Office of Safety and Mission
Assurance (Code Q). In this discussion, Pat represented the flight software for
Langley scientific instruments.

Pat cited three characteristics of flight software development: embedded systems,
distributed processing, and real-time. She went on to clarify these as follows:

Embedded systems - A specialized computer with custom-programmed
software used to control functions within the device it's controlling,

Distributed processing - A system in which tasks to be performed by the
available computing resources are executed by a number of processors,
often in parallel.

43

Real-time - Results are calculated in sufficient time to guide the physical
process under control.

She cited four typical examples of space flight projects at LaRC: CERES, JADE,
LITE, and MIDAS with flight life-times ranging from 11 days to a few months to 5
years, and flight code size ranging from 2K to 18K (where K represents 1000
source lines of code). In addition to on-board flight software, ground support
software, including simulators, test subsystems and mission operations
subsystems must be developed, and these range from 2 to 10 times the size of the
flight code. The SEAL has standardized on Microsoft Windows and other MS
software, Ada, object-oriented design, formal inspections, and Novell as their
local area network for internal mail and a shared group calendar. The SEAL tools,
based on PC and Intel, are considered a Center resource. The SEAL is also trying
to baseline their software development process and document it in guidebooks.
They also are collecting metrics on how software is developed in the SEAL. SEAL
personnel provide consultation to and arrange training for other groups at the
Center in software engineering processes and tools, but they do have a limited
staff. A list of the tools and software documents available from SEAL follows this
section. Anyone interested in learning about the tools, their use, and related
training should contact her.

Tom Zang is head of the Multidisciplinary Design Optimization Branch in the
Fluid Mechanics and Acoustics Division of the Research and Technology Group.
He also is the chair of the Langley Computer Users Committee (LCUC). He
represented researcher software on the panel.

Tom said that the LCUC intends to reorganize itself in the fall to align with the
new Center organization. The LCUC was set up about 20 years ago to provide a
voice for user concerns and desires to the Analysis and Computation Division for
short-term tactical and some long-term strategic planning.

The two products from research are reports and software. However, managers
and researchers simply do not recognize the importance of their software as a
technical product. He observed that NASA encourages the quality aspects of
technical reports, but not of software. Four types of software products are
produced by researchers at LaRC: concepts, portable modules, pilot codes, and
production codes. The concepts may include new algorithms and these are
published in technical reports. Modules are usually available as commented
code. Pilots are prototype software for early release with caveats since it is not
thoroughly tested, still may be in development, and has little documentation.
Production codes are well written and well documented computer programs. A
good example of multidisciplinary code at LaRC is FIDO (described by Bob
Weston at a later session at the workshop). In closing Tom stated he would like
to see management place greater value on good software, researchers write their

44

software for others as well as themselves, and software engineers act as a resource
for others at LaRC. He did note that software engineering is included on the list
of necessary skills in the Research and Technology Group (RTG).

In these proceedings, he has included a few charts from the LCUC files of a 1980
briefing by Jarek Sobieski which cite some of the same issues. A copy of Tom's

transparencies "Perspectives on Software Development” are included following
this section.

Pam Rinsland is the assistant head of the Electronics Systems Branch in the
Aerospace Electronics Systems Division of the Internal Operations Group. In her
22 years at LaRC she experienced the transition from the batch-oriented central
computing and plotting without preview to the "instant gratification" of time-
sharing. She has developed software for a wide range of aerospace applications,
including writing code to execute on computers ranging from Intel's first 4-bit
processor to the first supercomputers delivered to LaRC. In her current position,
she is in a hardware-oriented branch and promotes her firm beliefs in the
absolute necessity of close ties between hardware and software specialists, and in
maintaining discipline in the software development process.

Her opening remarks, Reflections from a "Jurassic Programmer” on Software
Development at LaRC, follow this section.

Peg Snyder, prior to her retirement from NASA in May 1994. was in the Data
Management Office in the Atmospheric Sciences Division of the Space and
Atmospheric Sciences Program Group. She has 31 years of experience in
software development at NASA, starting at Lewis Research Center with
FORTRAN code on a mainframe with 30K of 36-bit words (memory) for basic
research in nuclear physics scattering analysis and non-steady fluid flow. An
early lesson she learned was to number your punched cards (artifacts now found
in the museums in Washington, DC). She worked for several years in the Space
Station Freedom Program Office prior to coming to LaRC 3 years ago. Her
software experience ranges from office automation software and Space

applications to wind tunnel applications, data reduction, and CERES data
processing.

Peg's most important message to the audience was that best results are obtained
when an engineering approach is applied in the development of software.
Specifically, her approach has six steps: 1) Define the problem (in the 1960s an
engineer would bring a notebook to the programmer with "requirements"
documented); 2) Figure out how to solve (reformulate the problem in terms of
mathematics and select appropriate numerical analysis techniques); 3) Design
the solution; 4) Implement the solution; 5) Test; 6) Use and maintain. We
actually practiced more software engineering back in the batch days than we do

45

now. A second important message was that automated tools are only useful if
they help you implement a process already in place.

Brenda Zettervall is Quality Improvement Administrator for East Coast
Operations of the Port Hueneme Division of the Naval Surface Warfare Center
located at Dam Neck in Virginia Beach, Virginia. She has 18 years of experience
in software development including land-based integrated combat simulation
programs and systems engineering necessary to translate operational
requirements into simulation performance requirements. She is a member of the
Software Engineering Institute (SEI) Capability Maturity Model (CMM) Advisory
Board and the CMM Based Appraisal Review Group. She also is qualified to
perform Software Capability Evaluations. She is the first chair of the recently
formed Hampton Roads Software Process Improvement Network (HRSPIN).

Three years ago, Brenda became involved in quality improvement as part of a
competition between Naval support centers and between the Navy and AF for
software post-deployment support. Since the Navy is down-sizing and
decommissioning many ships, software process improvement was necessary for
survival since most of the systems supported at Dam Neck were on the "hit list."
Being able to maintain cost and schedule is highly dependent on the maturity of
the process in place. Hence they have embarked on establishing a management
discipline for software development and maintenance. This means their process
is documented, trained and enforced. The Navy is challenged to survive and to
improve their software engineering process, since the Air Force has a vision to do
all software engineering for the Department of Defense.

Questions from the Audience and Panelist Answers:

Q) Other engineering disciplines are based on mathematics. What is the basic
science on which software engineering is based?

A) Mathematics is the basis for formal methods and algorithms such as rate
monotonic scheduling.
Q) Suppose your organization were in charge of developing software for the

next generation aircraft. Would you fly on it?

A) Four panelists said "Yes" and two said that flight critical software was outside

their domain, and their organizations did not have the appropriate expertise and
training.

46

Q) How will the software development process have changed 10 years from
now?

A1) We will be doing it at home.

A2) Researchers will write code from day one using good practices - even if it is
just "for themselves".

A3) We hope to raise our organization to higher maturity levels, hopefully close
to a CMM level 5 and the Center to level 3 or 4.

A4) Necessity is the mother of invention. In the 60's there were incentives to
make programs work smarter (e.g., you could be called in the middle of the night
about your wind tunnel software if it didn't work properly). Things are
changing, so we will be forced to be more rigorous.

A5) There will be a trend toward graphical programming models, and off-the-
shelf packages available for control systems. There will be "6th generation
programming languages".

A6) We will be rewarding people for good software engineering practices
(activity will not be confused with productivity).

A7) Rapid prototyping and workstation platforms will be common.

Q) Where is a good place for Software Engineering at LaRC? In an N-team, a
Branch or a Group?

Al) Software people are throughout the Center and there is no central focus or
mechanism for software developers to exchange ideas and information except in
the N-team. In a closed shop (as in the 1960's) professionals sat closely together
and could share ideas and software. The Software Productivity, Quality and
Reliability (SPQR) N-team is a good place for professional sharing.

A2) The Information Systems Division has a business thrust in Software
Engineering and it is focused in the SEAL, the LaRC Center of Excellence in
software engineering encouraged and supported by the Code Q Software
Engineering Program. (The GSFC Software Engineering Laboratory just won the
first IEEE Software Process Award; JSC has a Software Technology Branch; JPL
has the SORCE).

A3) Perhaps the Center should form alocal SPIN (software process
improvement network) or SEPG (software engineering process group) in
addition to the N-team.

Q) More than half of the software is being developed by people who are not
software professionals. Engineers, doctors, and lawyers often write their own

code. I can't find good textbooks written by professionals. Do you share that
view?

A1) Perhaps we can never get non-software professionals away from
programming. Would it help to have more training in software engineering?

47

A2) The Information Super-Highway may be more of a threat to a disciplined
approach than interactive programming!

A3) The SEI apparently is now hiring mathematicians rather than computer
science graduates, going back to the basics.

A4) Twould defend the engineer who writes his own code. We need better
practices in software development so the researcher can do the software work.
A5) Everyone needs to work more closely with the customer. The research
engineer and the programmer need to work closely together.

A6) We need to have more fundamental training for "FORTRAN-type"
programmers (basic training for research and prototype software).
Unfortunately, the training office doesn't like to repeat classes, which makes it
difficult to offer basic classes to a wide audience.

Q) Ibuild "Flight Systems" and there is electrical hardware that is not
well-documented. Are we confusing software engineering with engineering as a
discipline?

A) Thereis a difference between scientific research (prototyping) and systematic

engineering (final product) software. Software engineering professionals should
be involved with the final product.

COMMENT) We need to distinguish between scientific research and
engineering development. Be careful not to compartmentalize or constrain
research. 1did the software development on one of my own mathematical
models - it helped me to understand the problem.

In closing, Moderator Susan Voigt proposed 5 domains for software classification:
flight software, facility software, ground support equipment software,
management information systems, and research software (see Attachment). Also
the intended use of software may affect its level of disciplined development: My
use only, use within my work group at LaRC, Informal release outside LaRC, Beta
release outside LaRC, and Formal release (e.g. COSMIC) outside LaRC.

Members of the audience were invited to comment on the domains and intended
use categories and to join the LaRC software N-team if they were interested.

48

Perspective on Software Development
Charles E. Niles

What types of software do you develop? The domain is ground facility automation
systems, specifically closed circuit and blowdown wind tunnels and
research labs. Applications include control algorithms for test environment
conditions (Mach number, Reynolds number, pressure, temperature),
model support systems and other test articles (pitch, roll, yaw, Alpha,
Beta), and high pressure air systems (pressure, temperature); process
monitoring; operator interfaces; and utility functions such as data logging
and sequence of events recording. Hardware systems include 80486-
based microcontrollers, industrial PCS, PLCs, minicomputers, and
combinations of these. Supporting systems include commercial analog
and digital controllers, motion controilers, and servocontrollers.

Who are the users of this software? Facility operators, in support of LaRC and
commercial aerospace researchers.

What is the life cycle (how long is the software used)? Indefinitely. Generally, the

software is replaced during a CoF upgrade to computer hardware and
control rooms.

Is there much maintenance or enhancement required? Steady work - correcting
bugs and improving performance.

Maturity of Software Development - Software development, as we know it, has
been around for 40-50 years. Software engineering, has been around since the
early 1980’s. Considering that other engineering disciplines have existed for
1900 years or so, the software world has come a long way. Understand though,
that software engineering is still in its infancy. The point is that other engineering
disciplines are not exact sciences and neither is software engineering. Only the
laws of physics and the mathematics upon which they are based are.

Software Development Relative to Operating Systems - In recent years, more
popular languages, notably C and C++, have advanced the portability of
applications from mainframes, to minicomputers, to PCs, Macs, and
workstations. Witness that different operating system platforms are capable of
running the same application. However, the class of applications is generally
confined to office automation tools. | believe that application software developers
should be able to develop an application with no concern for the operating
system it will run on. Of course, we have no universal operating system today
and probably never will. But, the proliferation of operating systems and
programming languages demands a consistent application programming
interface. Currently, we have at least as many APIs as there are operating
systems and hardware platforms to run them on. Perhaps, a universal AP| will
emerge as the POSIX standards are developed. :

49

Software Reusability - DoD mandated the use of Ada to promote reusability of
source code, among other things. C++ was developed to foster the development
of reusable class libraries and methods. Neither has accomplished this goal,
and never will. Problem - reusability is more trouble than it is worth. How
many of you have ever written a five-to-ten line routine to do something because
there was not a library call to do it or because you could not afford the time to
locate one ? ... How many of you have ever obtained source code that seemed to
meet your needs but would not compile initially or did not execute as you
expected ?... Individuals and small teams will usually reuse source code they
have written themselves because they know where to find it and they know how it
works - and it does not matter the language in which it is written - they will
convertit, if necessary. But seldom will you go to another organization to find
code that you need. Can you imagine Microsoft and Borland sharing source
code ? Forget it. There are instances where commercial developers license
software packages from other developers - it is less expensive than litigation.
Problem - new or unique software does not already exist. An entirely new
application can be based on a existing components (system calls, intrinsic
functions, internally reused segments, etc), but they must be blended into a new
overall package. Blending it all together to create a new application is still time-
consuming, even if 50% of it is built from existing components... In my opinion,
widespread software reuse will not happen on a nationwide basis and definitely
not on an industry-wide basis. It is unlikely to be harnessed on a domain basis.

What is wrong with software developed at LaRC? What should we do about it?
1. Funding is always inadequate because of the politics involved in selling a
facility modification project. The the higher the cost of a project, the less likely
that it will be approved by HQ. When it is approved, the budget has been
decreased too much to accomplish the overall job, let alone the software part.
So, ultimately, we must complete the project in-house. The transition time for a
50,000-line job is not instantaneous. When we do a job in-house from its
inception, the product is better, but the project takes longer because only minimal
resources can be applied. The solution begins with properly planning a job and
estimating the cost, including risk factors, and selling it for what it will cost, not for
what management believes HQ will approve it.

2. Documentation is generally poor - it is usually outdated and incomplete. Face
it, programmers like to write code, not documents. Programmers are extremely
optimistic estimators. When they have used their allocated time getting their
code to run, they do not have enough time to document anyway.

3. Management/customers do not understand the true costs of software. Most
managers believe that software is something that comes on a set of disks or CD-
ROM, costs $500, and has a life of 6-12 months, depending on when the latest
revision is released. Management fails to recognize that the developer probably
spent $1 million and 20 person-years to develop the initial release and must sell
200,000 copies to break even. Facilities automation personnel and/or contractor
personnel, by comparison, have performed miracies with $200,000 and 4 person-

years. Unfortunately, our products have been overshadowed by late delivery and
hardware reliability problems.

50

How can software improvements be institutionalized at LaRC?

1. Define standards and the criteria for their applicability.

2. Train and equip developers better.

3. Apply newer, industry-proven techniques.

Aside: Software has improved. Consider that the applications we develop today
are significantly larger and more complex than their predecessors. | suspect that
most of us could rewrite some piece of software we developed a few years ago in
less time and far more robustly. So, what was it that really improved ?

What data should be collected on software developed at LaRC and how should
this data be used?

1. Description of the software - function, size, platform, language(s), etc.

2. Resources applied - personnel, cost, tools

3. Why it was developed - benefits

4. Techniques - requirements analysis, design, coding, testing

5. Lessons learned

Information of this type could serve two purposes. First, a project team could use
it for guidance. Secondly, after some period of time, a committee could evaluate
this database to establish recommended practices, identify common attributes
across different domains, identify common problems and how to avoid them,
develop cost/resource criteria for future software projects, etc.

How can we encourage problem (defect) reporting & collection at LaRC?

There are two distinct categories: pre-release and post-release. Pre-release is
the responsibility of the person(s) testing the software. Since the programmer
usually performs intial testing, any data is virtually meaningless. Post-release is
the responsibility of the users. | have found that encouragement is generally not
an issue in this case. Problems having potential safety impact - a portion of
which are software related - are reported when a subsystem fails. Under the
facilities Configuration Management program, the Facility Safety Head is
responsible for reporting such problems. Problems are generally reported when
a certain function of the software becomes important to a test. Generally, there is
no mechanism to report problems specifically with software at LaRC.

What suggestions would you make for how we should be developing software at
LaRC in the future? | believe an individual representing each software domain
(i.e. Blue team) should visit the SEI or a major commercial developer, spend a
few days observing, return, draft a software development handbook, obtain
feedback from a different set of individuals representing each software domain
(i.e. Red team), revise the handbook, publish it, and encourage management to
enforce it.

51

v661 ‘GL sunp
doys)iom 21S9D

1Y ‘Yyouelg OAN ‘PesH

oNo1 ‘Areyd
buez 'y sewoy]

jusawdojanaq
91eM]}JOS UO SdaAlloadsiad

52

Jawuing ajej ul _umN_:mm._om._ 99 IIIM
siasn 13)ndwiod —
(asl) s1apiroid -

:aousipny

saido} Buipndwios jo Ayauiea e uo
slasn uaamjaq abueyaxa uolnewsojuj 10} swnio} sapiroid —

sanssi buipndwod uo siapiroid
o} (payoijosun @ pajidjjos) suoljepuawwioddl jealjoe} -

sapino.d
ey} uoneziuebio siasn sjool sselb e :ajoy

yels poddns g yosseasal :diysiaquisiy

93ajyuIwI0)
sias J9indwon As|buer

53

uone|nwis

SwalsAs

SWw8IsAS

) SON 6uyndwod
awi] -jeay iedng painquisia
co:m. swaysAs
-EmE.:ooa uonewoiny uoiysinboy
32140 e
B buyureay gleqg
siuswanbay
aouabyleiyy Ayinoes %
Bunyo d y Jandwo
UIjJOMIBN sayaelsn [BIOYIUY Wv2/avd Bupunoody o_.m SQ:M
i
|

sJoquiapy J0joeUO) B
uolsialg 1ed auQ--diysioquapy

FNIWIWI0) Sias(y Jeyndwo) As|bueq

alnjonaqs bunsixg
a9 Iwwo) siasn 18yndwon Asjbuer

54

uoneziuebiQ OAN H1YH

55

Ansnpul ‘Ddsvs ‘Odv
‘9 1Y 0} salbojopoylaw Qg Mau idjsuel

514 8y} Inoybnoiy} sanianoe
Aeuljdiosipijnw jo yimodb ay) 19)so4

salpn}s uolnesijdde oy ui aredionled

Odi
jo ABojopoyiaw ay} ojul yoieasal wiojiad

suoljoun4 youeilg OdAiN

56

1S3.13jul JO S3|NPOW S}OBIIXD 3S|d 10 BPOI ||N} SISN JOWO)SND —
payoddns ‘pajepijea ‘Ajpuaiy-1asn qualdiye 4snqos —

Sapo)H uoljonpolid
}S949)JUl JO S3|NPOW S}oeIIXd 3S|d 10 BPOI ||N} SASN JIBWOISND —

pabbnqgap Ajjn} jou si pue 1asn Jiadxa ue
sasynbai ‘asodund _m_omnm AjjeatdAy si 1eyy apoa yoleasal e Jo asea|al Ajjea —

sapo) 10jid

salyjiqedes anoidu
10 ppe 0} sapod Bunsixa s Jawolsnd ojul pajelsodiodou) ale sajnpow asay) —

sa|npo 9|qeyiod
S9pod J3Indwod UMO s JawWoIsNd ojul pajesodioou) ale s)daouod asayy -

suonejuswalduwiy 49yndwod so/pue sjapous
jeaisAyd ‘ swiyyiobie mau buihaepun spdaosuoa ay) sajeujwiassip YSYN —

s)daouo)

SPNpo.id VSYN

57

0861 ‘pisaiqos

(0861 ‘OND1 01 pajuasaid)

0861 ‘yatepy ‘doysxiom
ABojouyosa] aisem)jos YSVN 40} pasodoad

jSaIqoS mejsoJepp
Aq

swelboud 19indwon padojanag
-VSVN aroadw] 0] Mo} :jesodoud v

58

0861 ‘pisaiqos

siadojansp uey) J1ayjo siasn jo spuey
uj Ajjeroadsa ‘yuaioyyaul Jo/pue ajqeljaiun

ale sweiboud asay) usyo 0o} Jey} S| WSO o

suollnjos pue saibojopoyjaw Juenoduul
mau Apoquia Ajuanbauij pue pajessuab

-1ayaeasal ‘AjjeardA} ‘eue sweisboud asay] .

syiodau
lewnio} YSYN 0} swiayl uojuedwod se AjjeaidA}
‘swelboud jdaosuoo-ay}-jo-joo.d ‘adAyoyo.d
SE)}40M yoleasal YSYN Ul pajesauab

aJe sweuboud 19indwod jo saquinu abiej y .

wa|qo.d

59

0861 ‘Dis8lqos

swajqoid Aouajolya pue Ajljiqeral snouas ay) Jo aaly
aiam sweusboid pajesauab 10joe1}U0D Y] JO JSOW ‘}SeIUO0D U]

Aauajoye sjqeidasoe jo winwiuiw

e Yiim ajerado way) ayew o} pue }Iom Wayj ayew o} papaau
919M LI0}Jd pue awy) yueayyiubis ‘pauieqo)siij atlom Aay}
uaym pauwiejd se yiom jou pip sweibousd asay) jo jje AlleaN

juelb pue asnoy-ul
‘“Ylom Yyalreasal YSYN wodj sawed sweiboid asay) jo Ajuolepy

a|dwes jueaiiubis Ajjeansiels e ‘saul| ueiuod4 000°0€ 01 00S
wou} azis uj buibues sweiboid gy mou sanjoaul wdyshs ay|
swajqoid sainjonuys pue Ajolsejaolsae ‘salweuLposae
yeaadie 4 pajjdde swesboud jo waysAs pajesbajul ue

YIIM DY VYSVN e s1eah g ised ay) 10j Bunjiom uaaq aney (yi
JO |ejo}) siaaulbua 10)oesjuod pue yYSyN jo dnoab sejnoiued v

90U9pINT

60

0861 ‘Disaiqos

ianje] ay) dojaaap o) paddinba
-1l S11nq J8w.0} 3y} ~0 10}e849 jeinjeU B S| Jayoieasal

weiboid pajuswnoop pue pajss) pue papod Ajjeuoissajoud
e pue ‘weiboid jdosuos-ay)-jo-jooid ‘adAjojoid e usamjaq
Hoyo jo aaibap pue s|nys Jo adA) ay) uy aouasap }sep

Ayenb weiboud 10} anuys o}
9ANU3dU] ou :8duanbasuo) "A1epuoass si snjejs s wesboud
ay) “41ed weibouid-yiodas sy} uj Jey) pajesso si uoissasdul

uononpo.id weisboud Ayjenb jou nq (‘018

‘ uonlonpouidai ‘siojesisn||l ‘sadIWLIWIOD |eLIO}P3) uoponposd
Hodas Ayjenb pyoddns o) paseab s) uonezjuebio yoseasal ayl
auou aAjadal |jim wesboud ‘uoneziuebio ay)

JO uofjuaje ayy |je aaiadau [|im podaa ‘wesboud J8indwod snid
Hodai jewioy ‘yiom yaseasal e jo yonpoad uimy jeaidA) e uj

wia|qo.d ayj jo sisoubeiq

61

Reflections from a “Jurassic Programmer” on Software Development at LaRC

In 1972 the software development environment at NASA was very different. It was
a batch environment where the programmer’s life revolved around the deliveries
of the “green tub” and the survival of data and programs on assorted paper media.
Some advanced programmers took advantage of 7-track tapes and data cells for
storage.

¢ The Revolution of 1975

Two major developments occured at the Center in 1975 that changed the scope and
way of doing software development forever.

The advent of micro-processors ended the monopoly held by discrete hardware
components or “random logic” in the implementation of control functions. This
also exposed engineers to “programmers” who were unfamiliar with hardware
and its associated engineering discipline. Critical real-time applications were
now in the hands of software developers and opened up the embedded domain.
Good programmers saw the value in adopting practices very analogous to those of
the hardware designers. As the electronics revolution continued, hardware
engineers were forced to become somewhat familiar with software.

The introduction of the interactive development environment was brought about
by the installation of a new operating system on the NOS mainframes and the
populating of selected offices with dumb terminals. Key-to-disk storage did away
with all of those card files. The terminal opened access to any programmer,
regardless of background. Requirements to pass proficiency tests on the use of the
system and FORTRAN in order to get a user number were deleted.

* Q&A: Was batch all bad?
Was interactive all good?

The answers to the two questions are No and No. In retrospect, I believe the batch
environment had several good attributes, and the interactive environment has
been a major factor in the lack of discipline we see today.

Pre-revolutionary programmers realized the value of desk checking and
flowcharting because it could take weeks to get a successful compilation if they
weren’t careful. Plotting in a batch mode was often an extremely frustrating task!
Programmers were freed from the tedium of keypunching because folks at ACD
punched and verified from green and white coding sheets. This gave me an
opportunity to insert lots of good documentation and scan the code one more time
before committing to the initial submittal. The slower pace of life gave

programmers more time to sit and stare at their code. In fact, managers expected
them to behave this way.

62

In the interactive world, the lure of instant gratification at the terminal led to a
rush to the CRT. People routinely sat down and began typing wildly without even
a coding sheet. The most unfortunate result was that people could more easily

confuse activity with productivity. Often, the lowest level task - pounding the keys -
was the key measure of productivity.

* The Revolution of 1994 - better, cheaper, faster?

Here at Langley, times have changed. In fact, times are tough. Software is now a
real product, not just a by-product generated along the way to some higher goal
like a report. Software is a technology that needs to be transferred outside the gate
- and it needs to be good because of its added visibility. Quality issues are brought

up everywhere. The dilemma is how to get quality while operating under a
constrained budget.

* No more heroes - we have to work smarter

There is no more of the “green medicine” to throw at our software problems.
There are no additional people to hire. We must realize that faster CPUs and
graphics workstations and glitzy tools simply speed up the most visible portion of
the development process. Automating a poor process will get us nowhere.

We need to create a recipe for successful software development for the various
domains at LaRC. That is, learn from the mistakes that are often the best
teachers, share the tips and tricks, and reward the people who do the right things
throughout the entire lifecycle that result in quality software. We need to catch
our collective breath and treat software like an engineering discipline in order to
design, manage, document, maintain, and transfer knowledge.

In short, there is no license to meander anymore. The choice is ours: will we

remember the past or are we, as Santayana says, “doomed to repeat it”?

Pamela L. Rinsland

63

-sasAjeue ejep uoissiw-jsod pue ‘swyjuoble

%9 S|9pOW ‘UOHEZI|ENSIA pue uonejuasald ejep ‘'sapod Q49 Se yons Jajuad sy} JO UoISsiW
yoseasal ay} yoddns 03 padojaAap sjSpow pue suonenus ‘sj00} sisAjeue Buussulbul
21EM}OS yoleasay

Juawabeuew

801n0sal Hye poddns 0} pasn aiemyos Juswabeuew a2In0sal [BIOUBUY PUE [SUUOSISd
SWa)sAS uonewioju| Juswabeue

‘suonesado uoissiw Buunp souewlopad wWajsAs
Jojiuow pue ‘syuswnisul 61y N0 ¥o8yd ‘uonelbajul pue 1s8) wuouad 0} pasn aiemyos
juswdinb3 poddng punoio

"sapIoe} 158} Jayjo pue ‘(LG/

‘)¢ /) ainjonisesul Yesole [eyuswadxe ‘swajsAs ejep Jebuey ‘sioienuwis ybiy ‘sjpuuny se
yons sanijioe; Dye Aey Joj uonisinboe ejep ‘josjuod ‘puBLLWOd Y swJiouad jey) aiemyos
aiemyos Ajjoe

‘sjuawingsu

(Jeayspuim ‘SSY1D ISV ‘69) yesouie Jo (3071VH ‘3117 '6'8) 8oeds 40§ UOKEIIUNWWOD
pue abeiojs ejep ‘Buissaooid ejep pJeoquo ‘|ouod ‘PUBLLILLOD swiopad jey} alemyos
asemyos 1ybij4

sulewo(alemyos Dye

64

Software Engineering & Ada Lab (SEAL) Tools

1) CADRE Teamwork CASE Tools:

a) Teamwork/SA (Structured Analysis)

b) Teamwork/RT (Real-Time Analysis)

c) Teamwork/IM (information Modeling)

d) Teamwork/SD (Structure Design)

e) Teamwork/OOD (Object-Oriented Design)

f) Teamwork/Ada (Editor, Code Generator, Design Sensitive Editor)

g) Teamwork/SIM (Simulation Tool)

h) Teamwork/FORTRAN REV (rev. eng.)

i) Ensemble "C" Tools
- System Understanding (High-level rev. eng.)
- Function Understanding (Low-level rev. eng.)
- Documentation

2) Paradigm Plus (Object-Oriented Meta-CASE Tool) (4)

3) McCabe Tools:
a) Analysis of Complexity Tool (ACT)
b) Battlemap Analysis Tool (BAT)
c) Ada language parser

4) Ada Measurement and Analysis Tool/Diana (AdaMAT/D)

5) VAX Software Engineering Tools (VAXset)

6) NASA Intelligent Documentation Management System (IDMS)
7) InQuisiX - Reuse Repository

8) In-Circuit Emulators
a) Microtek MICE-V 386 Emulator
b) Microtek MICE-V 486 Emulator
c¢) HyperSource-386/486 Source/Assembly-Level Debugger
d) AMC ES-1800 80186 Emulator (2)
e) Emulation Support Driver (ESD) Software

9) CADRE Software Analysis Workstation (SAW) (2)
a) Interactive State Analyzer
b) SoftAnalyst
c) Probes for 80186/286/386, 1750A, Generic

10) Logic Analyzers/Oscilloscopes:
a) HP 16500A Logic Analyzer
b) HP 16530A Digitizing Oscilloscope Module
c) HP Probes/Preprocessor Interfaces for: 15538, TMS320C30/31
80486, HPIB-RS232-RS449, SCSI Bus, user definable
d) HP Performance Analyzer
e) HP Inverse Assemblers
f) Fluke Scopemeters (2)

’

65

11) TITAN SESCO Flight Equivalent Computer
a) SECS 386/30 Single Board Computer
b) SECS 186/30 Single Board Computer
c) SECS 80/1553B Single Board Computer
d) Memory board (386 - 4M, 186 - 512K)
e) Parallel and Analog |I/0 Modules

12) PROM Tools
a) TITAN/Data 10 Flight Board Programmer
b) EPROM Erasers (3)
c) PROM ICE

13) PC Data Acquisition Hardware and Software
a) GPIB Boards and Software
b) AT-DIO-32F (10) AND DIO-96 Boards and software
c) SF-1 (2) Shuttle SFMDM Cards
d) LabVIEW For Windows Dev. System (2)
e) LabWindows
f) NI-DAQ DOS/Windows

14) Systems
a) VAXstation 4000 model 60
b) SUN SPARCstation 10
c) SUNserver 690MP
d) Novell 486 Server/UPS
e) Castelle FAXpress
f) SMTP Gateway PC
g) Various 386/486 PCs
h) Laser Printers (3)

15) Miscellaneous
a) Soldering/Desoldering station
b) Wire-wrap tools
c) Insertion/Deinsertion tools
d) Proto-Boards/Breadboards
e) Military & D-shell connectors and cabling tools
f) HP Power Supplies (4)
g) Optical Drives

For more information, contact Jerry Garcia at {(804)-864-5888.

66

3.1
3.2
33
34

SESSION 3 Software Engineering Standards, Methods, and CASE Tools
Chaired by

Susan Voigt

Model-based Software Process Improvement - Brenda Zettervall
A Study of Software Standards Used in the Avionics Industry - Kelly Hayhurst
A Software Tool for Dataflow Graph Scheduling - Robert Jones

Use of Software Through Pictures on CERES - Troy Anselmo

67

35604 [l004 D N95- 16455

Model-Based Software Process Improvement TQ

Brenda T. Zettervall
Naval Surface Warfare Center (NSWC)
Port Hueneme Division (PHD)
East Coast Operation (ECO)
Dam Neck
Virginia Beach VA

This presentation demonstrates our organization’s approach to model-
based Software Process Improvement (SPI). Our organization, a Process
Transfer Technology Affiliate of the STARS program, was selected in April 1993
to participate as a field test site for the Software Engineering Institute (SEI)
Software Process Definition (SPD) project. The products tested included the
improvement model itself, descriptive modeling techniques, the CMM level 2
framework document, and the use of process definition guidelines and
templates.

The SPI model developed by the SPD project at the SEI represents a five
stage cyclic approach for organizational process improvement. The cycle
consists of the initiating, diagnosing, establishing, acting, and leveraging
phases. Our organization’s three year Total Quality Initiative facilitated the
adoption of this model for our software improvement teams.

The process improvement infrastructure includes the steering committee,
SEPG team leader, the SEPG core advisors, Quality Management Boards
(QMB), and designated working groups chartered by the SEPG. The QMB’s
directly support the strategic goals of the organization. Monthly briefings from
the SEPG team leader to the steering committee and the QMB's facilitate the
integration of the SPI initiative with the strategic business goals.

The SPD project at SEI field-tested the Process Framework Document for
CMM level 2 at our organization. The document provides checklists to determine
CMM compliance for each Key Process Area (KPA). In addition, we gained
insight into the necessary organizational components to support well-defined
processes.

Process Definition (PD) training was provided for our SEPG, Technology
QMB, and the Project Planning Working Group. Our SEPG recognized the need
to establish a documented standard approach for PD that all software
improvement teams can use (i.e. a well-defined process!) . Our Process
Breakdown Structure establishes planning, definition, and enactment as the top-
level phases of the Process Engineering life-cycle.

68

The process planning phase is necessary to baseline and document the
current process by establishing the purpose and the high-level process flow. In
addition, it is important to set the policy that will over-arch the process and help
set the context for the follow-on process definition engineering. The process
definition phase is decomposed into three activities: layout, design, and
enactment information. The layout activity establishes the process relationships
by organizing the high-level entry/tasks/validation/exit (ETVX) information and
defining the work flow and work products associated with the process. In
addition, a mid-level process flow is established during this step which will
facilitate using the information organizers in the design activity. The agents that
will perform each task are also identified during this activity.

The design activity of the definition phase is characterized by the use of
multiple information organizers (i.e. templates) which provide the necessary data
to develop the enactment information. Measurement criteria and the validation
method are further defined in this stage of process definition.

The development of the enactment information is the last activity to be
performed in the definition phase of process engineering. The procedures must
be developed during this activity in order to trial test the process during a pilot
project. The training requirements for the process must also be established at
this time.

The enactment and process support is the final phase of process
engineering and constitutes the institutionalization of the process. This phase
must establish process control and process assurance procedures to ensure that
the process has the ability to improve. A training plan is important to support the
on-going use of the process.

The outer ring represents all of the work products developed during the
process engineering life-cycle. In an attempt to avoid shelfware, the SEPG is
targeting a Process User’s Manual for each KPA that will contain only the
essential information required for the user of the process.

69

W AAVYN'SISMSN'STTNOUIHD TIVANILLIZE
L602-19v€T
VA HOV38 VINIOYHIA
%O3N Wvd
3AV SNINO3Y 026}

YOLVHLISININGY LNIWIAOHdINI ALITVNO
TIVAY3LLIZ "L VAN3AHEG SN

INJINIAOUAINI SS3D0dUd
JHVMLI0S a3svd - 134dON

SNOILVYHddO LSVOD LSViH
NOISIAId ANANINH LY0d
YAINTD TIVAIVM HOVAINS TVAVN

70

TYNNYIW SS300dd
INIWLOVNE -
N9IS3d -
LNOAVT —
ONINNY'Id —

MYOMIWVYHS NOILINIH3Ad SSFI30dd
Z 73A37T 40 FON3ISSH
FHNLIONYLSYHANI LNIFWINOHdNI
T3dON IdS

© [33UIBIXD JO LORIAEH ¥

VANAIODV

71

i buyysiqes3

synsay

aseuyd juawnooq ?
sueld saljuoud pue SUOI|BPUAWIWIODBY
@ Sidueyd Lvd KBajens 188 dojanaq
59S$920.d
wuaungd

Buiuue|d
uony

azuapeseyd

yoeouddy
jeuoneziuebio
asiney

swea | uonoy
sssd0.d usliqels3

Suossan
az/jeuy pue
JuawnooQg

uonejeisul

%oelJ) pue ‘ainosxa ‘ueld
(s)hojid anoaxa pue ueid
sainseaw auyjaQ
sessaooud auiljag
uejd uoneyuaws|dwy)

buibesana]

bunoy

pue asiesddy

amnpnnseuy
Juawaaosdwiy
ysiqeis3

diyssosuods
yst|qels3 pue
XajuoQ 18s

buisouberqg

Juawiaaoidw)
10 sninuns

Buneniu|

TAAOI INTINIAOUJAI
SSAD0Ud TAVMALAOS

72

dNOYUS ONDIFYOM - OM
IONVUNSSY ALIIVNAD -~ VO

SOIHdVHOOW3A / 308N0S3Y - BWDAY

gwoay @ @ @ AN3WIONVHNI 30HOX4OM ~ SWD3M

v3sl - WO
]‘a ., ONILINNYW — SINOW
ADOTONHO3L —~ 8WODL
: SHOSIANGY
IHOD dNOYS SS300H¥d 'ON3 JUYMLLOS — Od3S
9d3S
X 1430 g8 1d30 Y 1d30
3311LINNOD T T
ONRIIILS ;
I ¥OLOIA
ININLNVC3d
INIWIAOHdAWI ALIVND
ol0

NVid JI931WVdlS

TINLDNYLSVIANI R
INAINAAOAIINI SSADOUd Al
0Dd - dHd - DMSN

73

30UBWLIOJUOD UON/BQUBULIOJUOD

ONINIVYL [S7004 (soueINSSY SS3204d) i (Awbajuj Jonpoud)
: aoueinssy Juswabeuepy
“Ag papoddns b__msc CO:N.:._@_%COO
ai1eMmyos a1emyos
.01 MOH, ﬁwmm:omoom_m o s’
“'Ag pejuaweydw, AR , m:tmmc_mcm
g pai awyf XJom 3y} :SQW 1onpoId
ﬁmmmoomm
Jusawaaojus
sje)sU0D 9 WbISIan0
ﬁ SQYVANVLS _ AO110d _ -< juawabeuep juawanosdwi
— suoistoaq pauliojuf lo|uas $$3201d 9d3S

HHOMINWWVYS TYNOILYHYIJO0 \

« i ANLL ANV
INAN.LININOD SHAMV.L,
¢ THAAT A0 IONASSH HHL

D3URIPIXD 4O UORIRE Y
BjuRs] SIEHEM sopung [RARH

74

M3IAZY Od3S = @

SYIZINVOHO
3ZITYNOILNLILSNI « S3HNAID0¥d » NOILYWHOSNI - MO . ANIT3SVE
1¥0ddNS
SS300¥d
NOILVYINHOZNI \f
INIINLOVNS INIWLOVYNI

NOIS3d . ﬂ

SS300¥d V %
ﬂ.m Hmn LNOAVT

I ONINNVY1d

$S300¥Ud

[as] | ey
ONINNV1d

INIINLOVN3 NOILINId3d

MUYOMHTINVIA Iesuaeare jo wompes v

Rl QIBLEY BIELNS [RARY

NOILLINIAAd
SSHOOUd IDOMSN

75

INIWILVLS ADITOd »

MOT4 SS300¥d 13A3T HOIH -

M3IAY3LNI -
NOILVAILOW =
3903TMONY =
Jovsn -
s370d -
JON3Ianv -

ONIRI3HLVO V1va *
3NIN3Svdg »

1¥0ddNs
mmmwomm
IN3INLOVNS

NOILVINHOSNI NOIS3d LNOAV1
INTWLOVNT [nl

INIWLOVN3

NOILINIZZ3d

ONINNV'Id
§S3004d

ONINNV1d

NHOMINVA
NOILINId3d SS300dd

DU8[BIX3 J0 HORIPRL ¥ |
uas) atepey saepung [EALH

76

dNO¥O

NOILLVDOOT1IV
3AUNOSIA

€ 39V1S

3ON3HANONOD
ANV
NOILVAITOSNOD

¢ 39VviS

S3LVNILS3
103rodd
31V¥3IN3O

} 3OVIS

WNO4
SLNIWININDIY
ONINNY1d

103royd d
HVdIdd

W04

SS3NISNg
M3N

77

SSHDO0Add INANWLININOD
ONINNVId LOdArOdd

@3NI43d SLONAOYUd MHOM -

MO714 $S300¥d 13A3T-AIN *
XAL3~

7T3AOW TVILING «
SJIHSNOILY 13" SS300dd *

140ddns NOILVIWHOANI NoIS3a i LNOAVT T oninnve
mmmwomn_ INIWLOVNT [| | $S300%d
INIWLOVNI
INIINLOVNI NOILINId3A ONINNV1d

- [BIURYBIXG JO UORRE ¥

SRIOMTANYVIA e s 0605 212N
NOLLINIAAd SSADOUd

78

10}8UIRI00D 13(04d :3QOD NOILOY yooqpueH s 3010 Waloid [IN3YVYd

Buipung -
S8M - .
SINPaS - pe820.id 0} jeAosddy
1] @auwwo) uonedoy %
921n0SaYy 0] ‘¢ NOILYAITVA
3NSe] 0} Juawpwiwo 'z
sisAjeuy ysty -]
a|npayos - : aja|dwo) syuiodyosyd v L
alewnsy - : SJUBWILIOYD) AA|0SaY ‘9
-Josuodg o4 ‘| 3 Buipuny
‘SEM '8Inpayog asedald ‘g
indino / sysiyoayD aeidwo) b
joug syuawalinbay ‘¢ paynuap! Jadio
sapo)) A8y ysiiaeis3 Z 1008l0i4 |BUILIOS * uwioy
Bunesy uonnjosay « MOS Jo adoog auluuaiaq 'L Auunpnddo .
o4 ssauisng \”wz S
‘ . 1sanbay
SM IsIMP8YyD - Joyeulpioo)) afold Juaby ssauisng MeN - slewnsy ‘Z
Japa ysel ‘i
VINILIND LIX3 / MSV.L \ VINILIYO AYINT 4NdNI
ssad04d Guiuueid aloid Ul paAjoAul
(lenuailod ‘d4y ‘spig) Buiuueld 193l0id :HSVL aJe SuoISIAIg pue sjuawpedaq |le ainsul :3S0didNd

(LIXZ ‘NOILVAITVA ‘USVL ‘A¥LINT)

SSAD0Ud XALd HHL

79

paaLopRd

— 4
:puada|
3:1pp polod = Od
(St P®) 844
viaq pewpdme) -
gy]
we) ¥ WNPOWS R g .
oy wery T epesE)
od 2pe) in0d od
(SEM P
ope] E] awassmbey nvapry ey
-y we) ey ampeps ms
wpe) iry npv) by mpo) Lo sape) by ope) v

»vg mpe) ivn g " Jedd mdnd MM

peferd uByass pue Judd Loewyomperd wSpeq remdeone)

pape) M qudd wo I = wma nede) ssdasg
od el MA/O0d BQ/Od HAQOd RA/Od

(fenuajod ‘fesodoad ‘pid)
ssad0ag Sutuueld 393foid

NOILVAITVA —
SINIWANSVIN —
SIN3OV -
SUSVL -
sindino -
S1NdNI =

SY3ZINVOHO NOILVINHOLNI -

1¥0ddNS NOILVIWHO4NI 1NOAV ONINNV1d
wwmwomm INIWLOVNI SS300%¥d
IN3IINLOVN3
INIINLOVN3 NOILINIZd3Ad ONINNV1d

SRIOMHAINVYHA
NOLLINIAAd SSAD0dd

© {9348}[BIXB JO UORIPEA] Y
auar) SIELBY SOBHAS (RARY

81

SLNIWNIHINOIY ONINIVHL «
TVANVIN SS300¥d
103royd 107id »
S34NA300¥dd

13¥0ddNsS NOILYWHOSNI NOIS3Ad 1NOAVT ONINNVd
wmmWOmm INIWLOVYNI SS300¥d
INIINLOVN3
IN3IINLOVN3 NOILINIZ3d ONINNV1d

SAUAOMAINVYHA
NOILINIAHd SSHOO0Ud

-~ [B3UaBIXS JO LORINE |
dapuer aiepEm soRpEnS ERLY

82

NVId ONINIVYL «
ININIDYOINT ~
JONVAIND / ONIRNOTIVL —

JONVHNSSY SS300¥d
LNIWIAOUdNI —
SISATTYNY —
LININUNSVIN —
HOLINOW -

TJOYLNOD SS300¥d *
NOILVZITVNOILNLILSNI *

NOILLINIAAd SSID0Ud

140ddnNs = NOILYINHOA4NI NOIS3d LNOAV ONINNV'Id
mmmWOQQ INIWLOVYNI $S3003dd
ANIWLOVN3
IN3IWLOVN3 NOILNId3d ONINNV1d
 [93UaY[BIXD JO LONIOEA Y
Mmcamzéh %Emu AIELEY] FOEHNG jRAY

83

S370¥ / SLNIOV

IVANVI
MO sy3sn
SS300¥d ﬂ SS300¥d

SFANAIO0™Ud

JONVHNSSY
ALITVNO

| [33Uay[BIXD 40 UORIPR] ¥

WH<DZ<2 mmmuomm .wwsmu&mmmﬁ%mgmmm%z
VYIAV SSHOOUd AdM |9 "ih

84

/1009

N95- 16456

A Study of Software Standards Used in the Avionics Industry

Kelly J. Hayhurst

Assessment Technology Branch
Research Technology Group

356 o4 X

Within the past decade, software has
become an increasingly common element in
computing systems. In particular, the role
of software used in the aerospace industry,
especially in life- or safety-critical
applications, is rapidly expanding. This
intensifies the need to use effective
techniques for achieving and verifying the
reliability of avionics software. Although
certain software development processes and
techniques are mandated by government
regulating agencies such as the Federal
Aviation Administration (FAA) and the
Department of Defense, no one methodology
has been shown to consistently produce
reliable software. The knowledge base for
designing reliable software simply has not
reached the maturity of its hardware
counterpart.

To date, existing software development
methods and standards have been accepted
largely based on intuitive arguments or
anecdotal evidence. The data typically
collected from a software development
process include a description and some
classification of faults identified during the
prescribed development and verification
activitics and the final software product.
From a statistical perspective, this
represents a single replicate of development
information. From this single replicate,
some insight could be gained into the
feasibility and impact of the software
development method on that particular
implementation of software. However, the
single replicate does not provide enough
information to make statistical inferences
with confidence about the effectiveness of
the development method in general and it
provides little information about the
operational behavior of the software. To
provide the empirical data necessary to
scientifically evaluate and improve software
processes and product reliability, controlled
experimentation that accounts for the
performance of software during operation is
needed.

In an effort to increase our
understanding of software, Langley
Research Center has conducted a series of

T/

experiments over the past 15 years with the
goal of understanding why and how
software fails. With an increased
understanding of the failure behavior of
software, improved methods for producing
reliable software and assessing reliability
can be developed. As part of this program,
the effectiveness of current industry
standards for the development of avionics
software is being investigated. This study
involves the generation of a controlled
environment to conduct scientific
experiments on software processes.

The Guidance and Control Software
(GCS) project involves the establishment of
an experimentation test-bed to monitor and
study the application of software
development methods and collect data that
can be used to make statistical inferences
about the effectiveness of those methods.
This test-bed allows the development and
simulated operational testing of multiple
implementations of a guidance and control
application that was adapted from the
terminal descent phase of the Viking
lander. The test-bed is comprised of
software requirements for the guidance
and control application, a configuration
management and data collection system,
and a software simulator to run the control
software in a simulated operational
environment. The simulator is designed to
allow one or more implementations of the
GCS to run in a multitasking environment
and to collect data on the comparison of the
results from multiple implementations.

This test-bed provides a capability for
empirically investigating the effectiveness of
software development methods along with
investigating the reliability of the resultant
software. Currently, the GCS test-bed is
being used to investigate development and
verification techniques that comply with the
Requirements and Technical Concepts for
Aviation RTCA/DO-178B guidelines,
“Software Considerations in Airborne
Systems and Equipment Certification.” The
DO-178B guidelines are used by every
commercial civil transport airframer and
equipment vendor since compliance with

these guidelines is required by the FAA for
developing software to be used in systems
or equipment certified for use in
commercial aircraft.

The purpose of the DO-178B document
is to provide guidelines for the production of
software for airborne systems that performs
its intended function with a level of
confidence in safety that complies with
airworthiness requirements. It is hoped
that following the guidelines in DO-178B
will ensure the production of reliable
software that is documented, traceable,
testable, and maintainable. The guidelines,
however, do not stipulate specific reliability
requirements for the software product since
currently available reliability estimation
techniques do not provide results in which
confidence can be placed to the level
required for certification purposes.

The DO-178B guidelines decompose the
software life cycle into three major
processes: a software planning process,
software development processes, and
integral processes. The software planning
process defines and coordinates all of the
project activities. The software development
processes are those processes that actually
produce the software product. These
include the requirements, design, code, and
integration processes. And finally, the
integral processes ensure the correctness,
control, and confidence of the software life
cycle processes and their outputs. The
integral processes consist of the
verification, configuration management,
quality assurance, and certification liaison
processes.

To study the effectiveness of the DO-
178B guidelines on the quality of the
software, a simple case study in which two
GCS implementations are being developed
is being conducted. Two teams consisting
of a programmer and a verification analyst
have each been tasked to develop an
implementation of the GCS following the
DO-178B guidelines within the GCS test-
bed. An extensive problem reporting
system captures relevant software error
information throughout the DO-178B
development process. This data includes:
a description of the software errors found:
the activity when the error was detected,
such as design review, unit testing, or
integration testing; and, action taken with
respect to the error. This data will allow us
to not only look at the number of faults
detected but, more importantly, the class of

86

faults found at different development stages
and the relationship among the classes of
faults found by the different verification
techniques. This information coupled with
the effort data for all development and
verification activities could provide some
insight into the effectiveness of the various
development and verification methods.

After the two implementations have
completed the DO-178B development
process, the final software products will
undergo testing in the simulated
operational environment to help identify
any remaining faults. These results could
provide further insight into the effectiveness
of the development methods and the
reliability of the final software products.

Due to the extent of the data collection
and configuration management procedures
used in the test-bed, any phase in the life
cycle of the GCS implementations can be
reproduced. This gives a researcher the
capability to go back to any one of the
stages of the development process, apply a
different development or verification
technique to the software, and compare the
resulting software to any previously
developed implementation. Hence, the GCS
development and verification environment
can serve as a test-bed for the analysis of
various software development and
verification processes.

Many lessons have been learned about
conducting software experiments during the
course of this study of the DO-178B
guidelines. A primary lesson is that a
simple case study is not an adequate
experiment design to evaluate an entire
software development process. Conducting
a more statistically rigorous software
experiment, however, would require
significant resources in terms of time and
man-power. Development of the GCS test-
bed, though, is a step toward conducting
the experimentation necessary to provide
the empirical data we need to scientifically
evaluate and improve software processes
and product quality.

The presentation provides further detail
about the study of the DO-178B guidelines
and the effort to conduct valid software
experiments.

A Study of Software Standards
Used in the Avionics Industry

Kelly J. Hayhurst
Assessment Technology Branch
Research and Technology Group

The Role of Computers in LaRC R&D Workshop
June 15, 1994

Outline

® Background
® Software Standards
¢ Guidance and Control Software Project

® Summary

87

Background

¢ Software is used in a wide variety of applications:

* video games, answering machines, anti-lock brakes on
cars, automatic teller machines, ..

¢ Software has many benefits compared to its
hardware counterpart:

« allows for more complex logic
* provides increased flexibility
* easier to modify

® Use of software is increasing in life- and safety-
critical applications

* avionics, Airbus 320
* control of nuclear power plants

Software Engineeri‘ng

® Software is a logical rather than a physical system
element

* Software is developed or “engineered” -- not manufactured

The establishment and use of sound engineering
principles to economically obtain reliable
software that works efficiently on real machines

® Engineering: the application of a systematic

approach based on science and mathematics,
toward the production of a product, process, or
system

88

Reliable Softwaré

® Achieving reliable software is a global problem
* no one knows how to generate perfect software

® Many proposed software reliability models (since
'64)
* Inadequate for estimation about life-critical software

— most consider reliability growth based on faults found in
development, as opposed to operational reliability

* Often based on simplistic (unverified) assumptions
— constant failure rates
- stochastic independence

® Little existing data available to validate modeis

Software Dilemma

= Software can significantly expand
system capability

?

= Since we don’t know how to build
perfect software -- Risk

How do we deal with these risks?

89

Software Standards

® There are a number of software guidelines/standards
used in industry

* DO-178B, used by the Federal Aviation Administration (FAA)
* DoD-2167A, used by the Department of Defense
* 1SO 9000

® Provide the guidelines for the production of software
that
* performs its intended function

— with some level of confidence that complies with the given
requirements

Software Standards

® Many software development techniques, models and
standards exist and are in use

* most have been accepted largely based on logical arguments
or anecdotal evidence

“...we need to codify standard practices for software
engineering -- just as soon as we discover what they

should be. Regulations uninformed by evidence,

however, can make matters worse."

-- from Digital Woes (Why We Should not Depend on Software),
by Lauren Ruth Wiener

90

Focus

We need to become “...informed by evidence”

® Conduct scientific experiments to understand:
* software failure
- need to examine operational behavior of software

* the effect of different software development techniques
- relate that understanding to process models and standards

Conduct Experiments!!
Collect Empirical Evidence!!

Software Experiments in ATB

a ™
4 GOAL
Establish a controlled environment to conduct
scientific experiments to address:
* the reliability of software and
K* the effectiveness of software development methodj

® Guidance and Control Software (GCS) Project

* study of the RTCA/DO-178B guidelines (Software

Considerations in Airborne Systems and Equipment
Certification)

. “sponséred”'by the FAA

91

RTCA/DO-178B Guidelines

® FAA requires compliance with DO-178B for software
developed for embedded commercial aircraft
equipment

* software designers must take a disciplined approach to
software development

¢ Gives general guidelines for software development
and verification according to “software levels” --
A-E

* A: anomalous behavior causes catastrophic failure
condition

* E: anomalous behavior has no effect on operational
capacity

Software Life Cycle Pro'cesses

® Planning Process: defines and coordinates the
software development activities

® Development Processes:

* Software Requirements Process
» Software Design Process

* Software Coding Process

* Integration Process

® Integral Processes: ensure correctness, control and
confidence

* Software Verification Process]

* Software Cohfiguration Management Process
* Software Quality Assurance Process
Certification Liaison Process

92

Development & Verification Flow

Development | Develop
Activities [Software
Rgmts.

Design -~ Code Integrate
Software Software Modules

Artifacts

Produced Rgmts.

l

Software

Verification Software
Activities Ramts.
Review

l

Design Code

Integration
Review Review

Test

DO-178B Life Cycle Data

Life Cycle Process

Life Cycle Data

Planning

Plan for Aspects of Certification
Development Standards
Accomplishment Summary

Development

Requirements Data
Design Description
Source Code
Executable Object Code

Integral

Verification Plan

Verification Procedures & Cases

Verification Results

Configuration Management Plan

Configuration Management Records
Development Environment Configuration index
Configuration Index

Quality Assurance Plan

Quality Assurance Records

Problem Reports

93

CASE Tools

® CASE tools can be used in the development of
airborne software

* Any tool used must be qualified

® Qualification is done by type:

* Software Development Tools: whose output is part of the
airborne software
—~ ex. source code generator
* Software Verification Tools: tools that cannot introduce
errors -- but may fail to detect them
— ex. analysis of complexity tool

CASE Tools Qualification

® For Software Development Tools:

* show that the development process used for the tool is
equivalent to that used for the airborne software

® For Software Verification Tools:

* show that the tool complies with its operational
requirements under normal operating conditions

94

Study of DO-178B Guidelines

® Work with the FAA to evaluate methods that comply
with the DO-178B guidelines

* Base study on earlier work done at the Research Triangle
Institute to study the DO-178A guidelines

® Experiment Design: One Shot Case Study
X O

[, > Apply DO-178B and see what you get

Guidance and Control Software
Project

® Develop software according to DO-178B
* use a guidance and control application

* complete the life cycle starting from software requirements
through integration

® Provide a controlled environment
* extensive documentation and configuration controi

* extensive data collection
— failure data
— effort and cost data

¢ Simulateioperation of the software to:
* determine remaining fauits
* determine reliability

95

The GCS Application

(Purpose:

(1) Provide guidance and engine control of a
planetary landing vehicle during terminal
descent to the planet's surface

(2) Communicate sensory information about the
_ vehicle and its descent to a receiving device

® Requirements are based on a
simulation program used to study
the probability of success of the
1976 Viking Lander mission to Mars

Terminal Descent Trajectory

-+—— Parachute Descent

<—— Engines Begin Warm-up

P

-+— Chute Released
(Terminal Descent Begins)

~——— Drop Height

-<—— Touch Down

96

Software Composition

The guidance and control software is composed of:

11 Functional Units which are divided into:

3 Subframes:
Sensor Processing
Guidance Processing
Control Law Processing
1 Frame = 1 iteration of the 3 subframes

1 Trajectory = ~ 2000 frames

GCS Development Processes

® Producing 2 GCS impiementations
* each implementation has a designated programmer
& verification analyst

® Each development team uses the same
software high-level requirements document

® Designs generated using teamwork

* conduct design review using formal inspection
procedures

® Implementations coded in FORTRAN
* projected size: 1500 - 2000 lines of code

* conduct code review using formal inspection
procedures

97

Integration Process

® Code is integrated at 4 levels: functional units
subframes
frames
trajectory

® Testing conducted at all 4 levels to:
* demonstrate that the software satisfies its requirements

* demonstrate (with high confidence) that errors which could
lead to unacceptable failure conditions have been removed

® 100% coverage for requirements-based tests

® 100% modified condition/decision coverage

Development Products

Software

Requirements
y

Design

Design Review

A
Co*de
Code Fvleview

Unit Test
Subframe Test

Y
Frame Test

\
Trajectory Test

More Products

Software
Requir'ements
Design »Design milestone 0
Design Review »Design milestone 1
/
Co'de Design m+ilestone 2{—»ICode milestone 0

Code milestone 1

| Code Review ™—Design milestone 3
y

Unit Test [—Design milestone 4

Code milestone 2

r oWl

Subframe Test =—Design milestone 5+{Code milestone 3

Frame Test =—Design milestone 6—»Code milestone 4

b

-]

\
Trajectory Test

Design milestone 7|—{Code milestone 5

Software Productﬁs

® Each software product (requirements, design, code,
test cases, documentation) is placed under
configuration control starting with the initial version

* the Code Management System (CMS) by Digital Equipment
Corp. is being used

® Each subsequent change to a software product is
controlled and captured by the configuration
management system

® All versions of any software product are preserved
and can be reproduced

99

Experiment Basics

® Independently generate “n” implementations of the
GCS

* each following the development methodology defined in
DO-178B

® Coliect effort/cost data for all development and
verification activities for each implementation

® Collect data on all faults identified in the software
products throughout the development and
verification processes

® Collect data on all faults identified in simulated
operation

GCS Simulator

® Provides inputs (about environment & lander) for
sensor processing

® Performs response modeling for the guidance and
control

® Receives data @

Sensor Inputs
1
= liesp nse
Sensor Processing odeling
send data record
Guidance Processing data
¥ send data recordi
Control Law Processing| data

. Y senddata | recor
GCS Implementation [data

100

GCS Simulator |

® Serves as a testbed for back-to-back testing of
multiple GCS implementations (up to 28)

® For back-to-back testing, one implementation is
designated as the “driver” implementation

® The results of all implementations are checked at
the end of each subframe

* for limit errors, comparing each variable against its
predetermined valid range

* for accuracy errors, comparing results of each
implementation with results of the driver implementation

® All miscomparisons are recorded and investigated
to determine the source of the problem

Operational Failure Characterization

s
[GCs | ;
Implementatibp Driv
C— Examine
555 Discrepancies Software
. ee———— .
Implementatipp2 Failure Data
——
Faults
found in
Imp. 1
GCS
Implementatipp'n
GCS Simulator

® Use the software failure data to

* estimate reliability of final version of each implementation
* determine effectiveness of the development methodoiogy

101

Understanding the Failure Data

Questions of Interest

Faults
found in
Implementation
n

-- How many fauits in the set?
-- What types of faults?

-- Are there any critical faults?

-- Are there classes of faults found
during random testing that are
different than those found during
DO-178B development cycle?

Studying Effectiveness

GCS Simulator GCS Simulator
Code
Reviewed Final
Versions Versions
< & < b

Software Failure
Data

Are these fault sets equivalent?

- Is the integration process more effective (or efficient)
compared to other fauit detection methods?

102

GCS Project Status

® The following project artifacts have been developed:
* Requirements for the guidance and control application
* Configuration management system
* GCS simulator
» Data collection system
* Project documentation

® 2 implementations are in the Design phase of
development

® Plan to complete development by end of December
‘94

Lessons Learned

® Be prepared to document - and document -- and
document

® Allow sufficient time up front for planning -- and
documentation of those plans

® Tools can be helpful
* can help you organize and track items more efficiently

® Tools can be hurtful

* it takes time ($$) to learn all about new tools and how to use
them
- allow for §uch time while planning

. everyohe invoived with the output of a development tooi
needs to understand that tool

103

More Lessons

® Complying with the DO-178B guidelines is not
cheap

* developing critical software is time, man-power, and
documentation intensive

® Collecting data -- software failure data and cost/
effort data -- is difficult

» software problems are often complex
* changes can impact many project artifacts
* reluctance to accurately account for development effort

Summary

Gathering empirical evidence is difficult
-- But IMPORTANT!!!

® GCS project provides a controlled environment to
observe and collect empirical data on software
development methods

* Realistic guidance and control application
* Applying industry-standard guidelines and practices

® Provide data to increase understanding of software

development processes and the quality of their
products

* improve software processes & product quality
* improve reliability estimation methods
* provide input for improving software standards

104

Project Plans

® Make the GCS testbed available to other researchers

® Improve the experiment design to allow more

statistical analysis

GCS Package

Software Requirements

Verification Products (Checklists, test cases
Simulator
Documentation

Intermediate & Final Development Produdts

etc.)

105

256043 110047 N95- 16457

A Software Tool for Dataflow Graph Scheduling
Robert L. Jones 111 IO j§/

NASA Langley Research Center

A graph-theoretic design process and software tool is presented for selecting a
multiprocessing scheduling solution for a class of computational problems. The problems of
interest are those that can be described using a dataflow graph and are intended to be executed
repetitively on multiple processors. The dataflow paradigm is very useful in exposing the
parallelism inherent in algorithms. It provides a graphical and mathematical model which
describes a partial ordering of algorithm tasks based on data precedences. That is, some tasks
must execute in a particular order whereas other tasks may execute independent of other tasks.
Dataflow graph nodes represent schedulable tasks and edges represent the data dependencies
between the tasks. Analytical analysis of the dataflow graph is possible for many digital signal
processing (DSP) and control law algorithms which are deterministic. For determinism, the
model is applicable to a class of dataflow graphs where the time to execute tasks are assumed
constant from iteration to iteration when executed on a set of identical processors. Also, it is
assumed that the dataflow graph is data independent. Any decisions present within the
computational problem must be contained within the graph nodes rather than described at the
graph level. Special transitions called sources and sinks are also provided to model the input and
output data streams of the task system. The presence of data is indicated by marking the dataflow
graph with tokens. The graph transitions through markings as a result of a sequence of node
firings. A node is enabled for firing when a token is available on every input edge of the node,
indicating that the task has all of its operands. When the node fires, it encumbers one token from
each of its input edges, delays an amount of time equal to the task latency, and then deposits one
token on each of its output edges. Sources and sinks have special firing rules in that sources are
unconditionally enabled for firing and sinks consume tokens, but do not produce any. By
analyzing the dataflow graph in terms of its critical path, critical circuit, dataflow schedule, and
the token bounds within the graph, the performance characteristics and resource requirements can
be determined a priori.

As for any mathematical model, there is a need for efficient software tools which facilitate
the use of the model in solving problems. A software program, referred to as the Dataflow
Design Tool, was developed at Langley to apply the dataflow model and design multiprocessor
solutions for spaceborne applications. The tool was written in C++ for Microsoft Windows 3.1 or
NT can be hosted on an i386/486 personal computer or compatible. The Design Tool takes input
from a text file which specifies the topology and attributes of the dataflow graph. A Graph Tool
was developed to facilitate the creation of the graph text file. The various displays and features
are shown to provide an automated and user-interactive design process which facilitates the
selection of a multiprocessor solution based on dataflow analysis. Performance metrics
determined automatically by the Dataflow Design Tool include the minimum time to execute all
tasks for a given computation (schedule length), the minimum time between graph input and the
corresponding output (TBIOIb), the minimum graph-imposed iteration period (To), and the
minimum time between outputs (TBOIb). Also, the tool determines if tasks can be delayed a finite
amount of time without degrading performance, referred to as slack time. Since the edges imply
the physical storage of data, the tool can calculate the minimum data buffers required for proper

106

sharing of data between tasks. In addition to numerical performance metrics, the tool graphically
portrays system behavior using Gantt charts and resource envelopes. The Single Graph Play
displays the steady-state task schedule associated with a single computation, and the Total Graph
Play displays the periodic, steady-state task schedule over a single iteration period.

The analysis and multiprocessor mapping of a finite impulse response (FIR) filter is
illustrated. A linear phase FIR filter is selected since it requires half the number of multiplies of
other FIR realizations. DSP problems are very suitable for dataflow analysis since they are
typically described as signal flow graph. One can easily translate signal flow graphs to dataflow
graphs by locating the computations (addition and multiplication) and representing unit delays
(inverse z terms) with initial tokens. Once the filter has been captured into the Graph Tool it can
be analyzed by the Dataflow Design Tool to expose the inherent parallelism and determine graph-
theoretic performance bounds. Since there are many realizations of the same filter, characterized
by different dataflow graphs, the Dataflow Design Tool can be useful in determining which
realization exposes the most parallelism. The SGP shows that some of the additions can execute
in parallel (C1 through C4), enabling the parallel execution of the multiplies, and finally the
sequential summation to generate the output sample. The SGP bars are shaded to depict the read,
process, and write activities of the processor, and the hollow bars denote slack time associated
with some tasks. In addition to the parallel concurrency, the TGP shows pipeline concurrency
that may be exploited. In this example, the TGP shows that at most 4 different data samples may
be computed within a sampling period of 224 time units. The Total Resource Envelope shows
that 10 processors are required to achieve this level of throughput. The dataflow analysis applied
to the dataflow graph and portrayed in the graph play diagrams assume infinite resources
(processors and memory) so that the exposed parallelism is limited only by the data precedences.
If there is not enough resources to exploit the inherent parallelism, the schedule must be
optimized. As an example, lets assume that a fully-static schedule (i.e., a task will execute on the
same processor for every iteration) on 8 processors is desirable to minimize run-time overhead.
The Dataflow Design Tool shows that such a solution can be achieved by inserting two additional
“artificial” data dependencies and increasing the sampling period to 260 time units. The tool can
also display the periodic memory accesses within a periodic schedule. Such an assessment may be
useful to optimize the schedule based on the limited bandwidth between processors or processors
and memory. Once a desirable solution is obtained, the tool can summarize the scheduling
constraints in terms of earliest start (ES), latest finish (LF), and slack time. The summary of run-
time requirements include task instantiations (INST) defined as the number of processors a task
will have to execute on simultaneously for different data sets. For a fully-static schedule, one
would expect all instantiations to be 1 as shown. Also, the buffer sizes (QUEUE) for shared data
is given along with the number of initially empty buffers (OE) and the number of initially full
buffers (OF) due to initial data.

In summary, the dataflow paradigm provides a general model suitable in exposing
parallelism inherent in algorithms as fine-grain as filters to more computationally complex
algorithms where a node might represent an entire filter. When the algorithm is deterministic, the
Dataflow Design Tool can analytically determine the steady-state behavior, performance bounds,
scheduling constraints, and resource requirements. By permitting the user to insert artificial data

dependencies, the dataflow schedule can be optimized to match resource requirements with
resource availability.

107

A Software Tool for Dataflow
Graph Scheduling

June 15, 1994

Robert L. Jones III

NASA Langley Research Center
Hampton, Virginia

Outline

Functional Overview

Analysis of a DSP Filter

Static Scheduling and Optimization
* Summary

108

Dataflow Design Tool

Performance Bounds
Task System, (7, L, <, M) + Schedule Length, ®
* T Setof Tasks

+ Time Between Input & Output,
+ L Fixed Task Latencies Dataflow P P

TBIO

. G D b

+ < Partial-Order on 7 raph (DFG) Minimum Iteration Period, T,
* M, Initial State Time Between Outputs, TBO,,
Slack

Processor Utilization

Run-Time Requirements
» Task Instantiations

» Processor Requirement
« Data Buffers

+ Artificial <, Control Edges

Dataflow Graph

* Nodes Represent 7 Graphical Displays

» Edges Describe < * Gantt-Chart Task Execution
+ Tokens Indicate Presence of Data * Single Hteration (SGP)
* Initial Marking = 9, » Periodic Execution (TGP)

* Resource Envelopes

Eight-Order, Linear Phase FIR Filter

Tasks Instructions

Direct Form Signal Flow Graph C1+ X = x(n) + x(n-7)
C2+ Xy = x(n-1) + x(n-6)
C3+ Xz = x(n-2) + x(n-8§)
C4+ X3 = X(n-3) + x(n-4)
cs* X = %o * h(0)

c6* X5 = Xq * h(1)

cr Xg = X3 * h(2)

c8* X = X3 . h(3)

C9+ Xg = X *+ Xg

C10+ Xg = Xg + Xg

Cite yln)=x;+x

Q y(n)

A DSP signal flow graph is a Dataflow Graph where the z-' unit delays can be
modeled with initial tokens. Thus, run-time implementation of delay does not

incur any overhead. Unit delays are simply implemented by initializing FIFO
queues used for intermediate data.

109

Dataflow Graph Capture of FIR Filter

Graph Tool

GHRAPH L NTHY TOOL - Btir.ant
Elle Edh Jools Dispiay Window fjun

Multiprocessor Implementation Example

Assumptions: Shared memory with no contention
Multiplies take 200 time units
Additions take 100 me units
Performance One-operand readiwrites take 10 time units
Two-operand read/writes take 20 time units

o e baer B

Data-Driven Schedule for One Iteration

Qispley jeiect
8-Order FIR Filter
CiT |
i3 —
o {
(o}id 1
A)
T T
- A t
i I
(k20 Ev_l
Processing = 1500 P' —.
Read/Wiite = 290 - I‘
Overhead = 16.2 % - 4E—L———.
CTe T
|
I TIME 0 (740)

Exposing the Parallelism in the FIR Filter

Steady-State Periodic Schedule

Lutal Lragh biay

Speedup Potential

SpeodUp
10 20 30 ¢ 3 &0 9 %0
[} . . .

Procssor Ruirements

&=
Qiepiey Jotomt

8-Order FIR Filter

Optimization for 8 Processors

A tully-static schedule is desired for minimum run-time overhead.

Single-iteration Schedule

Artificial Data Precedences

g s

8-Order FIR Filter g;: = g;:

T1Te 1) -

i 11 ——— EE——

- : ' Periodic Schedule
| agiey Jeient e
T 8-Order FIR Filter

i [Ciie

{
TIME O (740) |Qee "5l

111

Fully-Static Processor Requirements

Total of 8 DSP Chips are Required
Sampling Perlod = 260 time units —— —

.M — Lute) Re: g velup e
8-Order FIR Filter
3
Processor Assignments
P1 {C1+, C4+)
P2 {C2+, C3+)
P3 {c57) -
P4 {ce%)
P5 €7 T vecevaere. 0
P6 {cs") i
P7 {C9+, C10+) 3 Processors... 100.0%
P8 {C11+) 2 Fracessers... 100.0 %
TIME 0 (260) | amsieole™
ittt . Camputing Eften = 1798
Tolal Utization = 38.1 %X

Analysis of Memory Access

Optimized schedule has better distribution of memory accesses which e.g., can
be accomodated with 6 independent communication ports in the TMS320C40’s.

Unoptimized Schedule Optimized Schedule

M

)
| 8-Order FIR Filter 8-Order FIR Filter
TN R

[Cis T Cine

Too many localized memory Memory references are more
references! evenly distributed.

112

Summary of Fully-Static Multiprocessor Solution

FIR Filter
NAME LATENCY €S F SLACK INST OEfOF QUEUE
n 114->Cas $-) Cae
115->C3¢ §->C3
116~>C2¢ 7= C2¢
1I->Cre 9->Cle
113->Cae 4-> Cae
112-5CI 31->C
11 ->C2e 2->C
110->Cle 1~>Cte
Cle 139 [] 1 ['] 1 1/8->Coe 1> CAe
118->CS" 1->Cs"
cs* 220 130 50 [] 1 1190->Ch 1->Co
C2¢ 138 [] 130 [] 1 1/8->C3e 1=->C3
11e->CE 1->C8"
cs* 20 130 %0 ')) 110~>C9 1->C9%
C3e ik 138 260 [] 1 1/0->C7* 1->C7r
cr 20 280 480] 1 116->Cioe 1->Cilde
v [} 13 130 1% o 1 H19->cCe 1->Cs"
(= o 20 250 [31) 1 1 210->C11e 2->Cie
[1} 130 kiy 480 '] 1 110->CI1D¢ 1->Cloe
Cide Ak] 480 s10 [']] 118=->CNe 1=>Clie
130 $10 40 [] 1 110->01 1-> 01

Summary

* Dataflow provides a general model of computation
capable of exposing fine- and large-grain
parallelism.

* Design Tool provides analytic, compile-time
prediction of:
- Steady-state behavior
- Graph-theoretic performance bounds
- Iterative run-time scheduling criteria

* Permits inclusion of artificial precedences for
optimization.

* Facilitates selection of static run-time schedules.

113

Use of Software through Pictures on CERES

The CERES team has been using the Yourdon/DeMarco Structured Analysis/Structured Design
methodology to develop the data management system for producing higher order science data
products from CERES instrument data. As part of this effort, the team is using the Software
through Pictures CASE tool to automate portions of the methodology. This presentation
addresses the team’s experiences with the selected methodology and CASE tool, describes lessons
learned. and provides recommendations for other teams contemplating the use of structured meth-
odologies and CASE tools.

Software Engineering methodologies can help developers create systems in less time with higher
reliability and quality by providing tools tor managing the complexity inherent in software sys-
tems and development programs. CASE tools can facilitate using a methodology by providing
tools for creating and maintaining requirements and design models, automating consistency and
completeness checking, and automating much of the bookkeeping associated with following the

methodology. This allows developers to focus on the creative aspects of software design and
development.

Overall, our experience on CERES has been that structured methodologies and CASE tools prove
useful in creating, maintaining, and documenting high quality requirements and analysis products.
Although the learning curves associated with these tools require an investment in time and train-

ing early on, the benefits to be gained are well worth the effort and our productivity continues to
increase as we become more familiar with the methodology.

To date, the CERES data management team has used the tool to model more than 130 data prod-
ucts down to the level of atomic variables. define each data element in terms of type, units, accu-
racy, and number of bits, and create documentation from the information stored in the models.
Since the CERES system is primarily a science data processing system which generates more than
5 terabytes of data per month. focusing on the system’s data products has led to a deeper under-
standing of processing needs and resulted in higher quality functional requirements. Furthermore,
the graphical editors and consistency checking teatures provided by the tool have allowed the

team to rapidly iterate through the modelling process in less time than would have been required
without the tool.

The data management team is currently analyzing system functional requirements by modelling
the functionality needed to process instrument and higher order science data. Here again, the tool
speeds up the process of iterating on the model to converge on a final solution. In addition, the
tool has allowed the team to automatically produce software requirements documents in a stan-
dard format from information contained in the CASE tool database.

We have incorporated several customizations in order to tailor the CASE tool to support the spe-
cific processes employed on CERES. These customizations include creating templates for pro-
ducing CERES-specific documentation, enhancing the CASE tool main menu, and integrating
the CASE tool with the FrameMaker desktop publishing package. The CASE tool is supplied
with templates for producing documentation that complies with military software standards.
Since these standards were not appropriate for NASA publications. we developed templates for

114

several documents including a Software Requirements Document, Data Products Catalog, and
Data Dictionary as well as several utilities to provide hard copies of details stored in the tool’s
database for developer’s use in reviewing their models. We have also modified the tool’s main
menu to simplify the user interface for creating documents. Finally, there are several places in the
tool where the developer adds detail to the requirements or design model by entering free form
text. These items include functional descriptions. data product descriptions, and interface
descriptions. The CASE tool only supports ASCII text and. since much of our processing is
described in terms of equations, tables. and graphics this restriction limited our ability to fully
describe the necessary processing. Therefore. we have modified the tool to allow the use of
FrameMaker (desktop publishing/word processor) for entering descriptions of functions, data
products, and interfaces. This allows a designer to include any combination of text, graphics,
tables, and equations in these descriptions which are then included directly into the documenta-

tion produced using the tool.

Our experience indicates that when combined with well-structured methodologies, CASE tools
can provide a important component of a development environment which helps designers create
software products with higher quality in less time. However, the key to achieving productivity
gains is the process used to design the software. The processes incorporated in structured analysis
and structured design provide a sound framework for creating complex software systems and

must be adopted in order to derive any benefits from the use of automated tools such as Software
through Pictures.

115

&?&Eeu peumO-eedodw3 uy

1
==+

uonesodio) jeuonewsdju] suonedijddy aouaidg
owjasuy Ao}

v661 ‘9L-GI aunp
doys)iom @By HHe ul si8ndwo) jo 3joY 3yl

S3H3O uo
sain)old ybnoay) aiemyos o asn

116

&A wdwo peunO-esdopdw3 uy
y_ T i W/ A
- [M—

=

SUO}EPU3WIWOIDYH/PAUIEI] SUOSSIT] e
aje o) saduaddxy .

uoneinbyuo) pue sanjiqeded |00l ISV
ABojopoyiapy Jusawdojanag a1emyos e«

M3JAJIOAQ STHID o

NOLLONAOH.LNI

117

&A:&Eou vo:&O,ucxole:<
AN N Ny
—E=s=s

=3

BPY ‘O ‘NVHLHO4 apnjoul sabenbue .

JuswiuoliAUg SIASO3 a4l UIyum sajesadQ o

yiuop Jad ejeq jo sajfgesa) G ueyl a0 SIjelduay) e
(sjps9) swalsAsqns g| ojul paziuebiQ o

apo9) Jo saul 924n0S M00S Alelewixoiddy .

uoneodijddy Buissadsoid ejeqg oynuadIdS e

M3IAH3AO S3H3IO

118

&A:OQEOO peumQ-esdoxdw3 uy

y__ i W/ A

I.I"“lL. — —
===

=—————

sjopo Buneas) 10j saINpasoid - SS8201d e

S1ay10 0}

alesIuNWWo) ‘S|9pPo\ Ihoge uoseay ‘s|opo ainyde) - UOIJBION

Wby 1onpoid ayi piing

1onpoud
b1y ayy piing

:J0 sisisuo) Abojopoyiay o

119

1S9 /91e1b9)u|

uonejuawajdwy

ubisaqg

sjuawalinbay

ADOTOAOH1IN

&A:GQEQU poumO-ee4odw3 uy
AR RN _Nawmw
|.|I-. -
=i

=

uoIIN|OS JO 31N)I3YIIY S|apoW - ubisag .
A)ijeuonounj [9po - syjuswalinbay .
saseyd 9|94, a1 Alde3 uo siseydwig

yoeouddy paseg [9pOIN o
ubisag painjoniig/sisAjeuy painjonis .

(p.Juod) ADOTOAOHLAN

120

/
20y9

Hieay

- SNOIO3H

/
SNOID3H

t

suoibay u|
sabeiony
leneds msd

suojbey ul
sjuudioo

+C9
suojbai

&ASQEOU poumO-eedodw3 uy
!.Ii

MSd 00 =—p

eleg —

uodeH oD

uonewJsoju)

JapesH

~

MSd Wvdvd

dig

ofiejpey pnoj
inoy auo

10} yiems

SHO woyj
sjuldi004

SHO ===

(p.Juo2) ADOTOAOHLIN

121

uedwon peump-eedodw3 uy

&!E

fioysoday ul S|9pPO WOo4) uoeUBWNI0(J 3jedl]
uawuosAug dnouy 1o ul siadojanaq adniniy poddns

(Aouajsisuo) ‘ssauajajdwo)) ANpIieA I9PON HIBYD

122

fiojisoday jenua) ul sjapojy ainyded .
sjopoN AJipo pue ajeal) Ajpidey .

:0] S|00] 9PIAOId o

ubisag aiemyos jo sjoadsy aAneald uo sndo4
ued siadojanag os ABojopoyiapl JO SUOIOd djewolny e

S31LNIgvdvd 10041 3SVO

e
O
-
<
o
=
O
LL
<
O
o
wd
O
O
-
wl
7))
<
&

inaries

Customizations

Project Repository

An Employee-Owned CompanyQ

123

&?u&EOU peump-eedodw3 uy

y Vi W/ __4
[} I

L“ﬁ“’“u

===

wid)sAsqns yoe3 10} jew1o4
piepuels ul uonejuawnaog suawalinbay aanpo.d Ajjesnewolny e

walsAsqns yoe3 bujjjspoy Ajjuaiin) .

(joo1 Aq paindwo) sisAjeuy
Buizig) S|9POI Bled wolj pajesausy sbojeje)d Jonpoid eied

(siera@
uonduosag ejeg pue ainyonas ejeq ‘|oul) pajISpPO S1oNpolid ejeq e

SJUBWBABIYIY o

31vad Ol S3ON3ld3dX3

124

&:BQEOO peump-eedodw3 uy
SR~
= ————4
suonjos uo abiaAuo) o} sweibeiqg uo suonesdy] pidey smojly +
(wea] asual2g “|oul) siaquBAN
wea] Huowy s|apopy eleg pue jeuojjoung jJo uoljediunwwod +

swia)sAsqng usamlag saoepaju| Jo uoljepijep +

S)insay 9AIISOd

125

| suonenb3
pue ‘sajqe] ‘soiydesy poddns o0} Jayepaweld yum uonelbajul .

UOI}BIaUIY) JUaWNI0(3je}|Ioed 0} sabuey) nuspy ulely .

sajejdwa) Jusawndoq oi109ds SIHID o

suoljeziwolsny) o

(p.uod) SIONIIHAAX3

&—:&Eoo poumQp-esdodw3 uy

[E—

i e —
===

uondopy |ooL
3SVO pamojs alis yoe3 je asipadx3 AbojopoyisW/asvo jo yoel -

sa)is ajdinpy Buowy swa|qoid uoneziuosysuis
pajeal) suoljeziwoisn) jo Jjuswabeuepy uoneinbiyuo) .8soo,, -

suoned)] ajejdwa] aAISSaIX] Ul payNsay
juswdojanaqg ajejdwal Yim jajjesed ui uoniuyaq yuawnsoq -

suonoun4
uonesisiuiupy walsAs pajesidwon uoneinbyuon aus-sdninny -

SaNSS| o

(pauod) SADONIIHIAAX3S

126

&:EQEQU poumO-e8dodw 3 uy
| W/ A
g 1 /o

=== ¢
suoneziwolisnd 10} s$390.1d NI ‘1sa] ‘wuawdojanag paroidw) e«

Buiuiel] pajonpuo)) ‘spasn buiutesy
palnuap| ‘uoeulwassig Uoijew.loju| J10j SWNIo4 ysijqeisy e

uoneinbiyuo) pue ssad0id uoneisiviwpy waisAs paylidwis .

suoneziuebio
Buowy su1daauo0) Jo ssaualemy pue Buipuejsiapun pasueyuy e«

IAIISOd A1ap udag aABH aje(O} S}NSaY e
suoneziuebiQ ||y wol4 diysioquispy e

asn 1001 ISV arosdw ‘susaouo)
sSaIppy 01 YSVN Aq paysiiqels3 wea) uoyoy ANenp .

(puod) STONIIHILXT

127

&A:queu poump-eedodw3y uy
| W/ A
AR N a—

===

§S990.1d juswdojanaqg painonis

9sM pINoys ‘sapo) AN Jo uawdojana juasaiday suoneziwoisny e
1onpolid-Ag si uonejuawnsoq ‘joo) buisauibuz s1 3SyH o

jeanu) si buiulel] ‘yuawa|3z A9y si Abojopoylaiy e

(MMM ‘spleoq uiajing ‘lew-a) BIPaN suoiesiunwwo)
21U04}93]3 JNojdx3 ‘AressadaN uoljewoju] Jo uoneuiwassiqg Ajdwily .

$S820.1d uoijdopy Buineuipioo) 1o} [njasn INNWwWo) Buliddls .

paisinbay pyoddng juswabeuep buons .

abuey)n

SNOILVANININOD3H/A3ANHVY3T SNOSST

ain)n9 [enuajod sjuasaiday uoioNpoul [00L ISV o

128

SESSION 4 Solutions of Equations
Chaired by

Olaf Storaasli

4.1 Rapid Solution of Large-scale Systems Of Equations - Olaf Storaasli
4.2 Solution of Matrix Equations Using Sparse Techniques -Majdi Baddourah

4.3 Equation Solvers for Distributed Memory Computers - Olaf Storaasli

129

35609y /0043 N95- 16458 20y

Rapid Soluztzion—c;f Large-scale Systems Of Equations

by Olaf O. Storaasli, (O.0.Storaasli@larc.nasa.gov or 804-864-2927)
- for Workshop on the Role of Computers in Langley R&D (6-15-94)

The analysis and design of complex aerospace structures requires the rapid
solution of large systems of linear and nonlinear equations, eigenvalue extraction
for buckling, vibration and flutter modes, structural optimization and design
sensitivity calculation. Computers with multiple processors and vector capabilities
can offer substantial computational advantages over traditional scalar computers
for these analyses. These computers fall into two categories: shared-memory
computers (e.g., Cray C-90) and distributed-memory computers (e.g., Intel
Paragon, IBM SP-2).

Shared-memory computers have only a few processors (16 on a Cray C-90),
which rapidly process vector instructions (simultaneous adds and multiplies) and
address a large memory. Information is shared among processors by referencing
a common variable in shared-memory.

Distributed-memory computers may have thousands of processors, each with
limited memory. Explicit message passing commands (i.e. send, receive), are
used to communicate information between processors. Such communication is
time consuming, so algorithms need to be designed to run efficiently on
distributed-memory computers.

This presentation will cover general-purpose, highly-efficient algorithms for:
generation/assembly of element matrices, solution of systems of linear and
nonlinear equations, eigenvalue and design sensitivity analysis and optimization.
All algorithms are coded in FORTRAN for shared-memory computers, and many
adapted to distributed-memory computers. The capability and numerical
performance of these algorithms will be addressed.

O. Storaasli, D. Nguyen, M. Baddourah and J. Qin (1993), "Computational
Mechanics Analysis Tools for Parallel-Vector Supercomputers”, AIAA/ASME/
ASCE/AHS/ASC 34th Structures, Structural Dynamics and Materials Conference

Proceedings, Part 2, pp. 772-778 (Int. J. of Computing Systems in Engineering,
Vol 4, No. 2-4, 1993)

130

Dr. Olat Oliver Storaasli is a senior research scientist in computational mechanics
at the NASA Langley Research Center, Hampton, Virginia. He began his career

at Langley after receiving a Ph.D. degree in Engineering Mechanics from North
Carolina State University in 1970.

Long betore parallel computers were commercially available, Dr. Storaasli led a
hardware, software and applications team at NASA Langley Research Center to
develop one of the first parallel computers, the Finite Element Machine. He has
authored over 80 works in computational structural mechanics including static
and dynamic structural analysis, eigenvalue and optimization methods,
interdisciplinary analysis, data management, and parallel-vector structural
analysis methods on supercomputers. He received the Floyd L. Thompson
Fellowship of NASA Langley Research Center for post-doctoral research at
Norges Tekniske Hogskole in Trondheim, Norway, and Det Norske Veritas, Oslo,
Norway, during 1984-85 and has been invited back twice since He received 5
NASA-wide and 8 Langley Achievement awards for outstanding work in
Computational Structural Mechanics. These awards included significant
contributions to the NASA Viking and Integrated Programs for Aerospace-Vehicle
Design (IPAD) Projects as well as to the development of Relational Information
Management (RIM), since developed into the commercial relational data-base
software: R:BASE. In August, 1989, Cray Research selected the general-purpose
matrix equation solution software, pvsolve, developed by Dr. Storaasli and his
colleagues, to receive the GigaFLOP Performance Award. pvsolve was used to
solve the 54,870 equations (9.2 billion floating point operations) in the Space
Shuttle Solid Rocket Booster structural analysis in six seconds elapsed time. His
recent research has resulted in methods to analyze a 172,400 equation (5,737
bandwidth) refined model of a high speed civil transport and a 265,000 equation
automobile (3,374 bandwidth) application in less than two minutes on the Cray C-
90 and a method to generate and assemble stuctural stiffness matrices on the
Intel Delta at speeds 25 times that of one Cray C-90 processor.

131

Rapid Solution of
Large Systems of Equations

Dr. Olaf Storaasli

Computational Structures Branch
Mail Stop 240
NASA Langley Research Center
Hampton, VA 23681

Email: 0.0.Storaasli@larc.nasa.gov
Phone: 804-864-2927

a FAX: 804-864-8912 [Switch]
+ presented at
WD G

Workshop on

The Role of Computers in Langley R&D
June 15, 1994, Reid Conference Center
NASA Langley Research Center Langiey
Rosaarch
Con!:_r‘

| Obijective I

* Faster, cheaper, better analysis/design
of large-scale structures

- Develop algorithms to exploit high-
performance computers

- Evaluate computational performance

Langlay
Research
Center
8- 2

132

i | Outline] | 4

* Supercomputers & Structural Models
* Structural Analysis

- Nodal Generation and Assembly

m Linear Equation Solvers
LA LA NI Shared-memory computers

T Distributed-memory computers

= Nonlinear Equation Solvers
* Structural Optimization
* Design Sensitivity

Langloy
Runrch
Ceonter
o8-)

| Parallel-Vector Speedup

(over sequential code)

16x20=320
8x20=160 C-90-16

Y-MP8 \

Total

Speedup Joo
Sequential
ode
10
A Parallel Speedu Langiey

N(A\Sf P P Research

) 18 Coat_’r

133

| 1994 Supercomputers I
1BM sp-x| Cray C-90 and T-3D

Intel Paragon

NAS (160 proc)
and LaRC (48 proc) this summer

/

N‘gf\ Current world record holder
b 143 GigaFLOPS for MP-Linpack

| Record MP-Linpack GFLOPS* I

Fujitsu Intel
150 T VPP 500 Paragon
GFLOPS*)
120 ¢+
90 4 g’ics
60 + TMC Intet NEC :
CM-2 Delta SX/3
C
1991 1992 1993 1994 1995
-~ Langley
Q?f‘ * billion floating point operations per second Research

nter
os-§

134

Earth Observation
Platform

Generate mesh
(nodes and elements)

Assembile stitiness [K],
mass [M], and load {p}

* Solve: [K] {u} = {p} for displacement, u
[K] {0} =X [M] {¢} for modes, @

* Repeat: multiple analyses for nonlinear & design

- ¢ Plot: u, stresses and vibration modes, ¢

Langloy
Research
Cont "

5§37 Nodes
3,188 Equations

1 1,647 Elements
108 Bandwidth

2,694 Nodes
7,868 Elements
1[16,152 Equations
770 Bandwidth

14,737 Nodes
32,448 Elements

88,416 Equations
2,556 Bandwidth

Langla y
Research
Centcr
o8-8

135

Matrix Storage Methods
2910 Equation Stiffened Panel

Variable Band Skyline
-Row- i ~-Column-
SAXPY Dot Product
AlAA-1990 AlAA-1989

Langloy
Research
Center
o8-

| Parallel-Vector Structures Algorithms I

Static Eigenvalue | Dynamics-Control Flutter Optimization

Ku = f Kp= AMo |MU+Cu+Ku=f(t) | Ko= MO b, =bssd,

Substructuring | s Time Integration Unsymmetric
NL Algorithme | Lopspace | o fuced.Order | Choleski and g::;?{i‘v"“;‘h°ds
Simulate Multibody | Lanczos

Matrix Assemblers

- Finite Element based
- Degree-of-Freedom based

Equation Solvers

- Direct - Sparse
- lterative - SVD

Langloy
Researcim
enter
©08-10

136

| Structural Analysis Computation Time I

69%

B Factor B deflection

B Generate B Constraints B Output K,ﬁ|

Lnnglcy
Resoarch
Coenter,

|Parallel Matrix Generation and Assembly

[By element: Traditional thinking
Generate [k®)] on different processors
Assemble global [K] = T [K¢)]

can't write elements simultaneously!

|By node: New method I

Nodal Connectivity " E

Node! Proc. Elements O @

[

Lnngloy
Research
Center
o8-12

137

Parallel Structural Matrix Generator/ W
Assembler Demonstrated on HSCT

* Nearly ideal parallel speedup
* (no interprocessor communication)

Mach 2.4 HSCT

Time 3. R
(Sec) |

2,694 Nodes %
7,868 Elements

16,152 Equations
770 Bandwidth

1 8 16 32 64 128 256 512
Cray C-90 Intel Delta Langley
Number of Processors Research

enter
os-13

% Equation Solution Issues| [P
(Time, memory, disk space, I/O)

e lterative or direct 7/

* Banded or sparse ?

* “In-core” or “out-of-core” ?
Communication [

* Broadcast or ring?

* OSF or SUNMOS?

Langlo y
Research
enter,

138

lEquation Solvers I

* lterative and Direct (function of application)

* Linpack (MP Linpack), LApack

(needs full matrix for best performance)

* Banded Indefinite, nonsymmetric
(requires pivoting)

* Banded Definite Symmetric
(seldom occurs in practical structures)

» Skyline*, Variable-band*

(DOT-product, SAXPY operations minimize time)

* Sparse*, Wavefront* (<5% nonzeros)

* node or equation reordering minimizes solution time Langiey
Research

CO"'."
o815

IDirect Equation Solversl

Singular-Valued Decomposition
Gauss

Choleski
symmetric positive definite
nonsingular

nonsingular

Langloy
Research
enter
os- 18

139

|Iterative vs Direct Solvers I

* lterative slow, convergence not guaranteed
* Direct complex coding (banded, sparse)

1600
1200 ¢
Time
(sec) so0t <—I|terative (PCG)
400+ / Direct (Gauss)
o I

4 8 16 32
Number of intel Gamma Processors

Lnngloy
Research
Conter,

“Out-of-core” Direct Solver @
- using Cray Solid State Disk -

C-90

® as fast as “in-core” solver

* memory used: 1.1 xbandwidth?
(or 24 xbandwidth +6x neq)

-
o
-

15-@

Time |
(sec) B

Mach 2.4 HSCT
16,152 Equations
3.5 billion operations

10-§

“in-core”
,'out-of-core”

Langlcy
Rosaamh
Conter
o818

2 ' 16
Number of Cray Processors (Y-MP, C-90)

140

% Automotive Application %

of Sparse Solver

48,894 Elements
44,188 Nodes
263,574 Equations

* Langley solution took 40 CPU sec (1 Cray C-90 processor)
- tastest solution known to date -

* Challenge: achieve even faster solution on SP-2 and Paragon!

Langlcy
Research
onter,

Convex I -
Equation Solver Results %
- 10 Finite Element Models -

* Iterative slowest, Sparse fastest!
§§ H Equations
100000+ ot 316152—
@17675
m21954

D 44385

96306
0111,893 SS

rrev) A -
mm&mwmmmwma«é:msmmm o

v v 0172400
j » ©263.574 Car
3§ ,zsmw
% 8
3 ; b
ik fig
o 503 LK 3 @ E1 Langiey
Iterative Pvsoive Ve Pvsolve-ooc Sparse-Cray Veci-Sparse R‘s“,mh
....Convex.....CrayC-90..... Center
08-20

141

Industrial-Strength Equation
Solvers for [A}{x}={b} and [A}{x}=A[M]{x}

Solver Application Memory Parallel(shared) ~Parallel(Distributed)
PVSOLVE Symmetric + Def* equations X Bandwidth Yes (Cray C-90, etc) Yes (Intel Paragon, IBM SP-1}
PVSOLVE-OOC - 1.1 x Bandwidth? Yes (Cray C-90, otc) Not yet

PVSOLVE-OOC+ “ 24 x Bandwidth No (Cray C-90, etc) Not yet

VSS (Vector Sparse) “ function of sparsity No (Cray C-80, etc) Not yet

PCG(terative) - ~ matrix honzeros Yeos (Cray C-90, otc) Yes (Intel Paragon, I8M SP-1)
LANZ(Eigensolver) - equations X bandwidth Yes (Cray C-90, etc) Yes (Intel Paragon)

NOTE: These solvers have been evaluated on real applications with up to
and larger matrices with geveral million equations. PCG is slowest, VSS is fastest
(for large, sparse problems) and PVSOLVE-OOC is the best all-around paraliel-
vector solver. PVSOLVE-OOC exploits Cray solid-state disk.

* special versions of PVSOLVE for y ic and negative cosfficient matrices Langl.y
solve panel flutter, CFD, i and op probl R.‘..,ch
Ccntor
o8-

% [Parallel-Vector Equation Solver
(PVSOLVE)

Shared Memory | Cray GigaFLOP award
* “in-core skyline and variable-band versions

* “out-of-core” versnons- Memory ~ 1.2 bandwidth?
and 24 x bandwidth

e tuned for Crays (or shared memory computer/workstation)
Distributed Memory

* “in-core” skyline - intel /1860 or Paragon

* “in-core” row version - intel 860 or Paragon, IBM SP-1

»_ Conversion underway to TMC CM-5, Convex SSP-1 and Cray T-3D
Use

» COMET, Ford, U. Virginia, IBM, Princeton, LLNL, NSF sites Langiey
Convex, COMCO, NASA Lewis + several dozen sites R'z;“:c"
onter

142

30, 537 Nodes K+ Kg] {u} = {f}
” % ,?gg Elements
Time 25| "108 Bandwidn
(sec) _ ‘
20} Geostationary g
Platform T
15t /modiﬁed Newton-Raphson (301M)
BFGS (354M)
101 / Newton-Raphson (438M)
1]
Llngloy
: Number of Cray Y-MP Processors Research
. Conter,

Optimization Procedurel

* Find aircraft minimum weight subject to
displacement and stress constraints

* Nonlinear constrained optimization finds:

* Direction: BFGS, Simplex-Linear
Programming

* Step size: Golden Block

by,1 = by + 5, dy

. Langley
Jl\ﬁf esearch
= Conigz.

143

B [Parallel Simplex Method] ©H

Linear Programming

» Scalable time reduction
124

Time
(sec) 3,000 design variables

500 constraints

16

1 2 4 8
Number of Cray C-90 Processors

Langloy
Research
Center
0825

B [Parallel BFGS Optimization] Cic]

Minimize F(x,, X,, ..., X,) is equivalentto Fi(Xy, X ..., X)) = 0
F,(x, X3y .y X)) =0
For 11,000 nonlinear equations: : :

Fo(xy, X3, -0, X)) =0
2.6 or

3¢
Time |
(sec) ¢

Min (Fi2+ F2+ ... F.?)

Number of Cray C-90 Processors Langiey
Research
Con!:[.

144

Displacement Sensitivity Analysis %
by Automatic Differentiation (ADIFOR)

— 2-D Truss (80 bays x 190 stories)

60,990 truss elements
16.27 30,780 equations

16 1 5.2 million matrix terms
Time 14 | 168 semi-bandwidth
(sec) 96 Design Variables (X-Sect areas)
12 {4
10 +
8+ <¢—— Displacement Sensitivity (Gradients)
641 -— Generate RHS
Factor
4+ B : /GeneratelAssembIe
21 i 2.22
04 angley
1 8 16 Research
Number of Cray C-90 Processors Conter

W Design Sensitivity Analysis Methods W
for Mach 2.4 HSCT

7,868 Triangular Elements
1 Design Variable (skin thickness)
[DHand coded wADIFOR Finite Difference|

Time
(sec.)

16 64 64 128

Langlay
Number of Intel Delta Processors R’é::f::'

145

B [Concluding Remarksl | 4

New algorithms for high-performance computers
Perform well on large-scale applications:

- Nodal Matrix Generation and Assembly

- Equation Solvers: [K]{u} = {p}
(linear, nonlinear, “out-of core”,sparse)

Structural Optimization

- Design Sensitivity
Operate on Cray, Paragon, IBM SP-1 and SP-2!

Langloy
Research
enter
ol

| References I

» Storaasli, 0., Nguyen, D., Baddourah, M. and Qin, J.;
Computational Mechanics Analysis Tools for Parallel-
Vector Supercomputers”,AJAA/ASME/ASCE/AHS/ASC
34th Structures, Structural Dynamics and Materials
Conference Proceedings, Part 2, pp. 772-778, April 1993.

* also International Journal of Computing Systems in
Engineering, Vol. 4, No. 2-4, 1993 pp. 349-354

* on MOSAIC-WWW (Langley Technical Report Server)
* Questions: 0.0.Storaasli@larc.nasa.gov

* Free Videotape from: shuguez@nas.nasa.gov
(Santa Huguez at 415-604-4632)

Langley
Research
enter
08-30

146

35¢o0t 0 jlooyy N95- 16459

Solution of Matrix Equations Using Sparse Techniques 7

by Majdi Baddourah, (majdi@sunny.larc.nasa.gov or 804-864-2913)

The solution of large systems of matrix equations is key to the solution a
large number of scientific and engineering problems.

Tradition has it that iterative methods persist for CFD and direct methods
for Structures spplications. With the increase in computational power
(over 3 orders of magnitude this decade) problem sizes with full detail
that could not have even been considered tractable are now solved
routinely. The equation solvers used for structures applications have
advanced from the use of full matrix (LINPACK, LAPACK BLAS-3) to band
solvers to variable band and skyline solvers to sparse matrix solvers with
corresponding increases in performance. It appears that for large-scale
structural analysis applications sparse matrix methods have a significant
performance advantage over other methods This talk will describe the
latest sparse matrix solver developed at Langley which if not the fastest
in the world is among the best. It can routinely solve in excess of
263,000 equations in 40 seconds on one Cray C-90 processor.

Dr. Majdi Baddourah received the Ph D. in the Department of Civil
Engineering at Old Dominion University in 1991. He has been employed by
Lockheed Engineering and Sciences Company since then in support of the
Computational Structures Branch at NASA Langley Research Center. Dr.
Baddourah is widely recognized for contributing to the development of
software to exploit scalable high-performance computers for structural
analysis applications including the solution of large systems of equations
(approaching 1 million) by both direct and iterative methods.

147

Solution of Matrix Equations Using
Sparse Techniques

Majdi A. Baddourah
Lockheed Engineering and Sciences Co.

1994 Workshop
June 15-16

Outline

Matrix Storage

Reordering

Factoring

Results (Computational Structures and Fluids)
Conclusion

148

Original Matrix (No reordering)

- {

2,694 Nodes
7,868 Elements

116,152 Equations
770 Bandwidth

1
lMach 2.4 High Speed Civil Transport l

Reordering Methods

Method = 2 (RCM) |

"

..\. .

Method = 3 (GPS)

_Matrix After Factoring

T
' fgho L i
N A i
WA ‘l
N, "4
Ny i
J\;_ i
\;\,i R
) i;z!;
: Method = 0 A

| Method = 2

Method =3

Matrix Storage Memory Requirement

Million
Words

150

Reordering Time

16
14}
12}
Time 10}
8l

S N &b O

Method

Equation Reordering Reduces
Solution Time

Typical Node Reordering Equation Reordering

Iﬂach 2.4 Displacemaent I

!
|
!
!

7868 elements
e 2694 Nodes
.......... ‘ 16152 Equations
Maximum Band = 1266 T::::‘;msgsgd = 630497
= ° =
Average Band = 770 O Reordering
® Solution
(PVSOLVE)
Time
(Sec.) 200

Nodal Equation

Reordering Method

151

Factoring Matrix

* Banded or full:
- easy to vectorize.
~ problem size limit.
* General sparse:
~ difficult to vectorize.
- fewer operations.
~ indirect addressing.

Results

High Speed Civil Transport
Space Station

CFD Application
Automotive Application

152

Mach 2.4 HSCT Results

= Only VSS solves 172,400 equation
HSCT on Canvex €240

100000

10000
Time 1000

{Convex sec)
100

10

Mach 2.4 HSCT
o

alTER
oSKY
o PVSOLVE
aVss 10226

17,675 44,395 172,400
Number of Equations

Space Station Application

I Space Station Freedom I
- \.

111893 Equations
1664984 Non-zero terms
97 solution serg”

M—
—_— Beam Elements

Triangular Elements

> Using 1 Cray Y-MP procsssor

Quadrilateral Elements

and Solid State Disk at NAS

153

CFD Application

Before Reordering After Reordering with fill

NS

Number of Equations = 15360
Number of Cofficients = 257797 Number of Cofficients = 3081995

1 Cray C-90 Solution Time = 6.7 Seconds

Automotive Application

44,188 Nodes
48,894 Elements
263,574 Equations
NASA solution took 78 sec for full static analysis
(on 1 Cray C-90 processor)
- fastest solver known to date -

(32 sec reordering, 45 sec factor and 1 sec F/B)

CRAY Sparse solver took 102 sec for full static analysis
Banded Solver took 2500 sec for full static analysis

154

Conclusion

Sparse solvers are preferred for large-scale
structures.

Sparse Solver outperforms iterative solver which can
have convegence problems.

Sparse Solver can be used for CFD applications
Sparse solvers uses minimum memory.

155

\ N95- 16460
356063 //0045

Equation Solvers for Distributed Memory Computersp/l

by Olaf O. Storaasli, (0.0.Storaasli@larc.nasa.gov or 804-864-2927)

for Workshop on the Role of Computers in Langley R&D (6-15-94)

A large number of scientific and engineering problems reduce to the solution of
large systems of simultaneous equations. Solving large systems of simultaneous
equations rapidly thus makes the solution of large-scale structures, physics,
electromagnetics and fluid mechanics problems tractable. The performance of
parallel computers now dwarfs traditional vector computers by nearly an order of
magnitude, so the challenge is to rapidly solve large systems of equations rapidly
on the new breed of scalable parallel processing supercomputers.

Research at Langley on solving equations on distributed memory computers goes
back nearly ten years to the Langley Finite Element Machine, one of the nation's
first parallel computers with 32 processors developed by NASA before
commercial parallel computers were available. Since then, both iterative and
direct parallel equation solvers have been developed and tuned for parallel
computers manufactured by Flexible computer, N-Cube, Alliant, Encore, Cray,
Intel, Convex and IBM. The solvers, PVSOLVE and PVS-MP are currently running
on the IBM SP-1 and SP-2 under a Memorandum of Agreement with I1BM which
permits Langley early access to the SP-1 and SP-2 in return for IBM given
permission to use the NASA solvers for advertisements, demonstrations, and
trade shows. These Langley solvers are timely since in a recent $22.4 million
procurement, two IBM SP-2 supercomputers will be delivered to NASA (160
processors to NAS and 48 processors to LaRC). Based on benchmarks and the
Langley parallel equation solvers, these IBM supercomputers promise to surpass
the performance of traditional Cray vector supercomputers and other parallel
computers.

The talk will describe the major issues involved in parallel equation solvers with
particular emphasis on implementations the Intel Paragon, IBM SP-1 and SP-2.

156

Equation Solvers for
Distributed-Memory Computers

Dr. Olaf Storaasli

Computational Structures Branch
Mail Stop 240
NASA Langley Research Center
Hampton, VA 23681

Email: 0.0.Storaasli@larc.nasa.gov
Phone: 804-864-2927

[M] FAX: 804-864-8912 [Switch |
LN\
ﬂ ﬂ E presented at III II.II'
Workshop on
The Role of Computers in Langley R&D
. June 15, 1994, Reid Auditorium Langle
‘ Langley Research Center ,sg s :-rch

Ceonter
o1

| Objective I

* Faster, cheaper, better analysis/design
of large-scale structures

- Develop algorithms to exploit
distributed-memory computers

- Evaluate computational performance

-

COM or
o 3

157

o |0utline| i 4

Distributed-memory Computers

Structural Applications

Structural Analysis

- Nodal Generation and Assembly

¢ = Linear Equation Solvers

Structural Optimization

X-Design Sensitivity

0> Langiey
N
Resoarch
' Conte,

[1994 Distributed-Memory
Supercomputers

IIBM SP-2 I |Intel Paragon I

M. Current world record holder!
Being installed this summer at 143 GigaFLOPS for MP-Linpack
NAS (160 proc)
}JA and LaRC (48 proc) Langiey
Nalep 266 MFLOPS/proc peak Research

Conter.

158

| Record MP-Linpack GFLOPS* I

Fujitsu intel
150 ¢ VPP 500 Paragon
GFLOPS* A
120
T™MC
90 1 CM-5
60 1+ TMC Intel NEC y ~C
CM-2 Delta SX/3
ICra
" ;M___Lz
0 o=t t t + —
1991 1992 1993 1994 1995
N Langley
. * billion floating point operations per second Rgurch
) enter

[Performance Assessment Applications

537 Nodes
3,188 Equations
1,647 Elements

108 Bandwidth

I Mach 2.4 High Speed Civil Transport | Mach 3.0 High Speed Civil Transport

Geostationary Platform

,6! [T)
7,868 Elements
16,152 Equations

770 Bandwidth

14,737 Nodes

32,448 Elements

88,416 Equations
2,556 Bandwidth

&

Langloy
Research
Ceonter
oK

159

|Paral|e| Matrix Generation and Assembly\

By element: Traditional thinking
Generate [K®)] on different processors
Assemble global [K] = ¥ [K®)]

can't write elements simultaneously!

|By node: New method I \E

Nodal Connectivity S E
Node| Proc. Elements (4]

1 1

2 2

3 | 3 -]

R E Langloy
Research
Cen{’gry

a [Parallel Structural Matrix Generator/ w
Assembler Demonstrated on HSCT

* Nearly ideal parallel speedup
(no interprocessor communication)

Mach 2.4 HSCT
N :“‘“‘2':-‘

2,694 Nodes W
7,868 Elements
16,152 Equations

770 Bandwidth

1 8 16 32 64 128 256 512
Cray C-90 Intel Delta Langley
@ Number of Processors Research

C‘n'ﬂf
o

160

[V Equation Solution Issues
(Time, memory, disk space, 1/0)

* Tterative or direct ?

* Banded or sparse ?

* “In-core” or “out-of-core” ?
Communication

* Broadcast or ring?
* OSF or SUNMOS?

< Langley
. "(&0 R esearch

Center

Ilterative vs Direct Solvers I | 4

* lterative slow, convergence not guaranteed
* Direct complex coding (banded, sparse)

1600

Mach 2.4 HSCT
. 12001
Time

X
(sec) soot <—Iterative (PCG)
4004 Dlrect (Gauss)
0 16

Number of Intel Gamma Processors

Langlay
Research

Cinor

o%10

161

||nterprocessor Communication I

45, —KSR g LLL
40} B Paragon
MB/sec 2(5) ;g;:;o
25}
20}
15¢

10}

5},
500 1000 1500 2000 2500 3000
Message length (Bytes) Langiey
Research
Conter,

| Latency

OSF ys SUNMOS

120

r Delta 105 Paragon
100 nx1s. s OSF T11
usec 80t

SUNMOS
5/
SUNMOS
60 3 : 0/(MP processor on)
40 oo

20} |

csend- isend- alpha-median
unforced unforced

@ Langley
Research

CDI'I‘ or
o2

162

IParagon Status I

e OSF Rev 1.1 (Latency: 150 -> 85 psec, Tools
Communication: 11 -> 34 MB/sec, Memory 8 -> 6MB)

e OSF Rev 1.2 (Latency: 85 -> 50 usec

Communication: 34 -> 55 MB/sec)

* New comm Chip: tested at 400 MB/sec

L Dynamic Memory: avoid inconsistencies

(i.e. faster 2nd runs)

e SUNMOS: sandia-UNM O/S

(Latency: 24 psec, Comm: 175 MB/sec, Mem: 0.3MB)
178 MB/sec on Grace (NAS benchmarks run faster)

* Langlcy
| "l;ﬁf Resoarch

Conter
o%13

Interprocessor Communication

Methods [
oroadeast Rin
(widely used) Ring
1 1

2 tree 3 brigade

2
/Binary\'l 7 Hucket é

5 po

' Langley
Research

Center
a4

163

§H | Solution Time: Mach 2.4 HSCT I

* Ring communication reduced solution time

* Slower than 1 Cray processor
I Mach 2.4 HSCT Displacements]

300
2,694 Nodes
200 7,868 Elements
Time 16,152 Equations Broadcast
(Sec) p
S
100 % %
ol [I
ol 1 % 2 i §
1 16 32 64 128 256 512 Langley
Number of Delta Processors Research
Conter,

|

Solution Time Breakdown
- Mach 3.0 HSCT -

« Communication dominates
« Computation scalable (< C-90)

500-

Time 4901

(secs)
3004

200

100 [

04

&

Delta/NX

PafagonlSUNMOS
24

128 256 512

128 256 512
Number of Intel Processors

C1ray C-90
o |

164

Langiey
Research
Center

oré

Solver Performance
- 32 Gamma Processors -

120 - « faster than Intel SES ProSolver
110.2

16,146 DoF HSCT

~ 100 ¢
Time g s
(sec)sgo | :
60 -

40 -

20 4

PVSOLVE ProSolver paley

Research
Center
o7

| 4

for Mach 2.4 HSCT

7,868 Triangular Elements
1 Design Varlable (skin thickness)

{[oHand coded = ADIFOR Finite Ditference
140,
120t

Time 400}

(sec.)

80t
60}
40}
204 .

oLl : e Ea
16 64 64 128 L.aﬁgloy
Number of Intel Delta Processors ogearch

Conter
oM

165

% |Concluding Remarks I

New algorithms for distributed-memory computers

Perform well on large-scale applications:
= Nodal Matrix Generation and Assembly

- Equation Solvers: [K]{u} = {p}
(linear, nonlinear, “out-of core”,sparse)

* Structural Optimization
- Design Sensitivity
Operate on Paragon, IBM SP-1 and SP-2!

Langloy
Research
Con.t’gz.
| References l
* Storaasli, O., Nguyen, D., Baddourah, M. and Qin, J.;
Computational Mechanics Analysis Tools for Parallel-
Vector Supercomputers”,AIAA/ASME/ASCE/AHS/ASC
34th Structures, Structural Dynamics and Materials
Conference Proceedings, Part 2, pp. 772-778, April 1993.
* also International Journal of Computing Systems in
Engineering, Vol. 4, No. 2-4, 1993 pp. 349-354
* on MOSAIC-WWW (Langley Technical Report Server)
* Questions: 0.0.Storaasli@larc.nasa.gov
* Free Videotape from: shuguez@nas.nasa.gov
(Santa Huguez at 415-604-4632)
Langloy
Research
Conter,

166

SESSION 5 Automatic Differentiation
Chaired by

Olaf Storaasli

5.1 Applications of Automatic Differentiation in Computational Fluid Dynamics -
Larry Green

52 Automatic Differentiation for Design Sensitivity Analysis of Structural Systems

Using Multiple Processors - Duc Nguyen, Olaf Storaasli, Jiangning Qin and
Ramzi Qamar

167

N95- 16461
Scg 06 [100Y§

Applications of Automatic Differentiation F /3
in Computational Fluid Dynamics ‘

Lawrence L. Green, Perry A. Newman, and Kara J. Haigler
Multidiscplinary Design Optimization Branch
Fluid Mechanics and Acoustics Division

Automatic differentiation (AD) is a powerful computational method that provides a
means for computing exact sensitivity derivatives (SD) from existing computer programs
for use in multidisciplinary design optimization (MDO) or in sensitivity analysis. The
Mathematics and Computer Sciences Division of Argonne National Laboratory and the
Center for Research on Parallel Computation at Rice University have developed a pre-
compiler AD tool for FORTRAN programs called ADIFOR. The ADIFOR tool has been
easily and quickly applied by NASA Langley researchers to assess the feasibility and
computational impact of AD in MDO with several different FORTRAN programs. These
include a state-of-the-art three-dimensional multigrid Navier-Stokes flow solver for wings
or aircraft configurations in transonic turbulent flow. With ADIFOR, the user specifies
sets of independent and dependent variables within an existing computer code. ADIFOR
then traces the dependency path throughout the code, applies the chain rule to formulate
derivative expressions, and generates new code to compute the required SD matrix. The
resulting ADIFOR-generated codes have been verified to compute exact nongeometric and
geometric SD, for a variety of cases, in less time than is required to compute the SD matrix
using centered divided differences.

168

APPLICATIONS OF
‘ AUTOMATIC DIFFERENTIATION
| IN COMPUTATIONAL FLUID
DYNAMICS

L. Green*, A. Carle**, C. Bischof***,
K. Haigler*, and P. Newman*

*NASA Langley Research Center
**Rice University
***Argonne National Laboratory

What are Sensitivity
Derivatives?

¢ Sensitivity Derivatives (SD) describe how one
thing changes with respect to another thing

¢ Example:
How a car’s speed changes when braking
— slowly at first, then more quickly
(how much)
— speed decreases as braking increases

(which way)

¢ SD’s describe how much and which way to
change the variables in a multidisciplinary
design optimization (MDQ)

169

Objectives

+ Obtain exact SD using the computational
technique of Automatic Differentiation (AD)

¢ Assess the feasibility and computational
impact of AD in a typical MDQ problem

The SD Matrix

I, —» (00, do, 0,]
> 0O,
L] P . dy dJdL, Jy
Code | o o, Jd, 4o, do,
L, = d, JdL Jj

¢ Sample inputs: Mach number or geometry
¢ Sample outputs: wing pressure coefficients or grid
¢ SD matrix required in MDQ

170

Calculation of the SD Matrix

+ Divided differences (DD) (baseline + perturbations)
— Proper step size difficult to determine
—Truncation & resolution errors

+ Hand coding (quasi-analytical) / symbolic
manipulators

—Manual dependency checking
—Error prone and time consuming
¢ Automatic Differentiation (AD)

—Automatic dependency checking and derivative
coding

- Exact derivatives via chain rule
— Quick & easy; possible speed-up over DD

The AD Tool

¢ ADIFOR (AD of FORTRAN)/ PARASCOPE
(Argonne National Laboratory and Rice
University)

¢ User identifies dependent and independent
variables in program

¢ ADIFOR follows program flow, traces
program dependency paths

¢ ADIFOR formulates exact derivatives via the
chain rule

¢ ADIFOR generates new code for derivative
objects

171

Potential ADIFOR Use: By Application

~ SHipbuilding Environmental.)

Automotive

1.
‘.

Sensitivity Code

Manufacturing -

Meteorology

Astrodynamics

Potential ADIFOR Use: By Problem Type

Control Error Analysis

Approximati
Optimization pproximations Design

Sensitivity Code

Prediction

Trade-off Synthesis
Studies

Sensitivity
Parameter Analysis
Estimation

172

MAY

- |Quasi-Analytic Differentiation

Fortran
Ar(\:algsls) Quasi Fort
ode - ortran
‘ Analytic [mg Analysis &
Specification Differentiation SensltlvcltydAnalysls
of input and
Output

I've got them

Automatic Differentiation

ortran Standardization

“@ . Arg)lg:ls (4
At
hae? 2

pecification

of Input and
Output

like (%7) also?

JULY @

173

Building a Sensitivity Code

Your
Computer
Code

Objective o _ Code with

. é Sensitivity
functions Derivatives

Design
variables

Automatic Differentiation

I need sensitivity
denvatives $F)

Fortran
Analysis
Code Sensitivity
ADIFOR | Analysis
Specification Code
of input and
Output

I've got them.
Would ou
e like (3—)also”

174

The CFD Codes

¢ WTCO: wing C-O grid generation
— Algebraic
— Transfinite interpolation
¢ TLNS3D: 3-D thin-layer Navier-Stokes solver
— Finite-volume, central-differencing
- Grid sequencing, multigrid
— Scalar artificial dissipation
— Baldwin-Lomax turbulence model

ADIFOR Applications in CFD

¢ WTCO wing grid generation program
—Independents: thickness, cmax, twist
— Dependents: grid coordinates (x, y, 2)

¢ TLNS3D Navier-Stokes flow solver
—Independents: grid coordinates (x, y, 2)
—Dependents: pressure coefficients (Cp)

175

ADIFOR Applications in CFD

¢ WTCO wing grid generation program
—-Independents: thickness, cmax, twist
— Dependents: grid coordinates (X, y, 2)

¢ TLNS3D Navier-Stokes flow solver
—Independents: grid coordinates (x, y, z)
—Dependents: pressure coefficients (C,)

¢ WTCO-TLNS3D coupling via file transfer
- Grid
— Grid SD matrix

— Application of chain rule d(Flow) _ d(Flow) 9(Grid)

d(Sect) A(Grid) d(Sect)

Computational Results

¢ ONERA M6 wing planform
¢ NACA 2412 airfoil sections
¢ 97 x 25 x 17 grid
e M_ =0.84, o = 0.00, Re = 11.7 x 10¢
¢ Wing C, and SD of wing C,
¢ Coloring: white/red = large, blue/black = small
¢ Several geometries:
—baseline
—thickness perturbations +
— cmax perturbations +
—twist perturbations +

176

s

STE

Summary

¢ Feasibility of using AD in CFD demonstrated

¢ ADIFOR calculated exact geometric SD for
grid-flow coupling similar to MDQ problem

¢ ADIFOR calculated SD through_complex
algorithm for nonlinear problem

¢ ADIFOR processing easier & faster than
quasi-analytic method

¢ AD competitive with & more accurate than
divided differences

Special thanks to...

¢ Veer Vatsa for use of TLNS3D code

¢ Mary Adams for FAST animation sequences
¢ Thomas Roberts for PowerBook movies

¢ John Knox for video production

¢ Thomas Zang for continued support

¢ Laura Hall, Andreas Griewank, and George
Corliss for initial training and support with
ADIFOR

179

Sensitivity Derivatives =
BETTER

Multidisciplinary Design
Optimization =
PRODUCTS & PROCESSES

Automatic Differentiation =
EASILY, QUICKLY & RELIABLY

180

3s¢o07¢ /oo 47 N95- 16462

Automatic Differentiation for Design Sensitivity Analysis of
Structural Systems Using Multiple Processors

Duc T. Nguyen™, Olaf O. Storaaslit, Jiangning Qin*, and Ramzi Qamar* / S2
Multidiscplinary Design Optimization Branch
Fluid Mechanics and Acoustics Division

Automatic differentiation tools (ADIFOR) is incorporated into a finite element based
structural analysis program for shape and non-shape design sensitivity analysis of
structural systems. The entire analysis and sensitivity procedures are parallelized and
vectorized for high performance computation. Small-scale examples to verify the accuracy
of the proposed program and a medium-scale example to demonstrate the parallel-vector
performance on the multeiple Cray-C90- processors are included in the paper.

* Multidisciplinary Parallel-Vector Computation Center, 135 KDH Building, Old Dominion
University, Norfolk VA 23529-0241

T Computational Mechanics Branch, NASA Langley Research Center, Hampton, VA
23681

181

Automatic Differentiation for Design Sensitivity Analysis of
Structural Systems Using Multiple Processors

by
Duc T. Nguyen', Olaf O. Storaasli®, Jiangning Qin’, and Ramzi Qamar’

" Multdisciplinary Parallel-Vector Computation Center, 135 KDH Building, Old Dominion
Untversity, Norfolk, VA 23529-0241
¥ Computational Mechanics Branch, NASA Langley Research Center, Hampton, VA 23681

Abstract

Automatic differentiation tools (ADIFOR) is incorporated into a finite element based structural
analysis program for shape and non-shape design sensitivity analysis of structural systems. The
entire analysis and sensitivity procedures are parallelized and vectorized for high-performance
computation. Small-scale examples to verify the accuracy of the proposed program and a
medium-scale example to demonstrate the parallel-vector performance on the multiple Cray-C90
processors are included in the paper.

1. Introduction

Using the familiar finite element procedure!", the static equilibrium equations for a structural
model can be expressed as

[K(b)]nxn{z}nxl :{ﬂnxl (1)

where (K (b)], {z} and {F} are referred to the stiffness matrix, nodal displacement vector and
nodal force vector, respectively. In Eq. (1), "n" represents the active degree-of-freedom of the
discretized structural model.

The stiffness matrix [K (b)], in general, is a function of design variable vector {b} (where b
€ RY). As an example, {b} may represent the cross-sectional areas of various truss members, or
thickness of plate members (for non-shape type of design variables), or it may also represent the
joint coordinates of various nodes of a structure (for shape type of design variables).

A typical constraint, involving a limit on a displacement or a stress component, may be written
as

g(z,06)=0 (2)

For the sake of simplified notation, it is assumed that g depends on only a simple design variable
b (i.e. b € R*"). Using the chain rule of differentiation, one obtains

dg _ 8g+XT dz

a8 ekt 3)
db db db

182

where X is a vector with components

d

0q

X i

4)

Q
N

V|

The first term on the right-hand-side of Eq. (3) is usually zero or easy to obtain, thus one
discusses only the computation of the second term.
Differentiating Eq. (1) with respect to b, one obtains

K« dz . dF dK

az 5
db o6 db)

Premultiplying Eq. (5) by x" K!, one obtains
XT‘_d_Z-_-XTK‘lﬂ?—ﬂ(*Z (6)
db db db
Numerically, the computation of x' Z—z can be performed in two different ways. The first, called
the "direct method", consists of solving Eq. (5) for %123 and then taking the scalar product with

X. The second approach, called the “adjoint method"® ?, defines an adjoint vector A which is the
solution of the system

KX=x (7)

or
A=K'x (8)

or
AT = xTK' (since matrix K is symmetric) 9

and thus, Eq. (3) can be re-written as

dg _ 98 ,r(9F _ dK) (10)
db ab ob db J

The solution of Eq. (7) for A is similar to a solution for displacement under a "dummy” load
vector {x}.

Once, the sensitivity information %\E has been computed, any gradient based optimization
softwares® ! can be used to obtain a new, improved design.
The focus of this paper is in the parallel computation of g-z as shown in Eq. (5), and

particularly, the computation of the term Z_’[f :
Since in the finite element procedure

elements

(K]= Y [&9] (11)

e=1

Therefore, computation of 24LX1 involves with computation of i&"% and the latter can be

db
obtained either by
(1) Finite Difference Method

183

or
(11) Analytical Method

In the finite difference method, a small perturbation of a design variable is first applied, then
approximate derivative (which can be affected by round-off and truncation errors®!) can be
generated. The analytical method tends to generate very cumbersome expressions for the
derivatives. Thus, the objectives of this paper is to use automatic differentiation (ADIFOR)

tools®' to compute the derivatives of %ﬂ in a parallel-vector computer environment.

A brief review of ADIFOR tools' is given in Section 2. Parallel generation and assembly "
of the stiffness matrix [K] is presented in Section 3. Parallel-Vector equation solver ®' which will
be used to solve system of Eq. (5) is summarized in Section 4. Numerical examples are presented
in Section 5, and conclusions are drawn in Section 6.

IL. A Brief Review on Automatic Differentiation!®

Automatic Differentiation (AD) is essentially an automatic implementation of the chain rule
of differentiation based on tracking the connection between the dependent (or output) and
independent (or input) variables.

Typically, to calculate the derivative of any output variable in a computer program with
respect to any input variable, one modifies the original program by inserting of specialized
instruction which identify the relevant output and input variables.

Automatic differentiation produces exact derivatives, limited only by machine precision. There
are two modes of AD. In the forward mode, the chain rule is evaluated from the input to the
output. In this mode, the computational cost increases with the number of input variables. In the
reverse mode, the chain rule is evaluated from the output to the input.

In order to understand the forward mode in AD, let's refer to Figure | where the computation
flow to evaluate

- 20 b, - 20 b,

(26,6, +vZ 8°) b (26 +2 b))

is shown in a form of the directed graph.

The derivatives of 2%

and % are also shown in a form of the directed graph in Figure 2.

2 1
In Figure 2, the connecting link between any 2 vertex represents the chain-rule derivatives.

As an example, 29 =2 b, and %4 = [.
é b, da

On the other hand, if the reverse mode of differentiation is used to calculate ZZ . then the

o

chain-rule of differentiation will start with the output variable y;, and then proceed as -following:

184

dy, dy; 3a . 9
dx, da db db
208, < 1 <25 - 20

= +

(21’1 b+ 2 btz)z (Zbl b, + v2 bxz)

It has been concluded from earlier research works® > '% that using automatic differentiation (AD)
method, such as ADIFOR tool ©, will be more computationally efficient than the finite difference
method. In most problems, however, analytical method is more efficient than ADIFOR tool (but
at the expense of assuming there is no human errors in deriving analytical derivative expressions).

The comparisons of computational costs and the accuracy to evaluate derivative information
between the Finite Difference, Analytical and ADIFOR have been discussed'® * ', This paper,
therefore, will focus on the issue of incorporating derivative calculation subroutines (generated
by ADIFOR) in a parallel-vector high-performance computer environment.

III. Parallel Generation and Assembly on Distributed- and Shared Memory Computers!”

The choice of the storage scheme for the global stiffness matrix in any finite element analysis
code is based on whether it will save the memory or it will enhance the vector speed, or both.
The row-oriented storage scheme™ is good for saxpy operation and shared memory type
computers, while the skyline storage is good for dot product (daxpy) operation. Moreover, the
skyline storage scheme requires less memory and this feature is important for computers with
distributed-memory (since each processor usually has less memory capacity as compared to
shared-memory computers). Fortunately, the Intel iPSC/860 computers have good vector
performance for daxpy operation. In order to use the vector-unrolling technique to improve the
vector performance, a block-skyline columns storage and block rows storage schemes for the
stiffness matrix is used on the Intel and Cray type computers, respectively (as shown in Figure
3). To simplify the discussion, assuming the global matrix is full and three processors are used
to store different portions of the global stiffness matrix.

The size of the block is called k if there are k columns (or k-rows) in each block. It is realized
that the choice of k will have the effects on

1. the in-core memory requirement,

2. the vector performance,

3. the communication performance.

For the Intel iPSC/860 parallel computers, the block size in MPFEA is set to be 8. Since each
processor only has certain block-columns (or block rows) of the global stiffness matrix, the
generation and assembly of this matrix can be done in parallel without any communications
among processors. The work involved in the generation and assembly procedure can be
summarized as (for each processor i, where i = [, 2, ... , NP):

185

Task 1. To identify (but not to search for!) the elements that contribute to the columns (or rows)
which belong to processor 1.

Task 2. To generate these elements stiffness matrices.

Task 3. To assemble the global stiffness matrix with these element stiffness matrices.

[t should be noted here that even for the case of nonlinear structural analysis, Task 1 of the

above procedure needs to be done only once, while Task 2 and Task 3 have to be performed
repeatedly since the global matrix will be updated in each nonlinear iteration.

IV. Parallel-Vector Choleski Method Development™®

In the sequential Choleski method, a symmetric, positive-definite stiffness matrix, [K], can be
decomposed as

(K] =07 U (12)
with the coefficients of the upper-triangular matrix, [U]:
u; = 0 for i>/ (13)
u, = Ky, o= U—/ for ;=1 (14)
1
~1 ,
u; = | K; - u; for 1>1 (15)
el
~1
K-> uyuy (16)
k1 ..
u; = . for 1,7>1

For example, ug, can be computed from Eq. (18) as:

ko - u. U, - e, - - u.u
u, = 57 15 Y17 hs thy ~ ths Uy s Usy 17

Uss

The calculations in Eq. (17) for the term ug, (of row 5) only involve columns 3 and 7.
Furthermore, the "final value" of ug, cannot be computed until the final, updated values of the
first four rows have been completed. Assuming that only the first two rows of the factored

matrix, [U], have been completed, one still can compute the second partially-updated value of
us, as designated by superscript (2):

(2) _
Usy" = Ksg = U5 Uy — Uyg Uy (18)

If row 3 has also been completely updated, then the third partially-updated value of ug; can be

calculated as:
3 _ ()
U = Us; — U5 Uy (19)

This observation suggests an efficient way to perform Choleski factorization in parallel on NP

186

processors. For example, each row of the coefficient stiffness matrix, [K], is assigned to a
separate processor. :

From Eq. (17), assuming NP = 4, it is seen that row 5 cannot be completely updated until row
4 has been completely updated. In general, in order to update the i row, the previous (i-1)rows
must already have been updated. For the above reasons, any NP consecutive rows of the
coefficient stiffness matrix, [K], will be processed by NP separate processors. As a consequence,
while row 5 is being processed by a particular processor, say processor 1, then the first (5-NP)
rows have already been completely updated. Thus, if the i row is being processed by the p*
processor, there is no need to check every row (from row | to row 1-1) to make sure they have
been completed. It is safe to assume that the first (i-NP) rows have already been completed as
shown in the triangular cross-hatched region of Figure 4.

Synchronization checks are required only for the rows between (i-NP + 1) and (i-1) as shown
in the rectangular solid region of Figure 4. Since the first (i-NP) rows have already been

completely factored, the i row can be "partially” processed by the p" processor as shown in Eq.
(18, 19).

V. Numerical Applications

Different finite element types (such as 2-D Truss, and Plate/Shell elements) and different type
of design variables (such as cross-sectional areas, joint coordinates of truss elements and
thickness ot plate elements) are considered in this section. The first two examples are small-size
for the purpose of verifying the accuracy of derivatives (d [k] / d b) generated by ADIFOR®™
as compared to the ones obtained by finite difference technique. The last example is medium-size
for the purpose of evaluating the parallel-vector performance of the entire finite element and
Design Sensitivity Analysis (DSA) process.

Example 1: Plate-Structure With (Non-Shape) Thickness Design Variable

In this example, 32 plate elements''"! are used, a point force is applied at the center of the fixed
plate (see Figure 5). Thickness of a plate is selected as (non-shape) design variable in this case.
The original thickness is 0.03 and a perturbation of 0.5% is used in the finite (central) difference
scheme.

The derivatives of element stiffness matrix (in global reference and using ADIFOR) with
respect to the thickness t for typical members such as members 5, 12, and 19 ar presented in
Table 1. These derivatives are in good agreement with the ones obtained by finite (central)
difference scheme.

Example 2: Truss-Structure With (Shape) Joint Coordinate Design Variables

In this example, a 1 bay x 1 story truss structure is shown in Figure 6. This small-scale
structure has 4 joints and 5 members. All joint x-coordinates of this structure are selected as
(shape) design variables. A horizontal force F is applied at node 1. The dimensions for each base
and height of this structure are 12" and 9", respectively. Young modulus and cross-sectional area
are 29000 Ksi and 4 in’, respectively. A perturbation of 1% is used in the finite (central)
difference scheme. The derivatives of element stiffness matrix (in global reference and using
ADIFOR) with respect to a typical x-coordinate of joint 2 for members 1 and 5 are presented in
Table 2. Again, these derivates are in good agreements with the ones obtained by finite (central)

187

difference scheme.

Example 3: A 2-D Truss Structure With 80 Bays and 190 Stories

In this example, a 80 bay x 190 story truss structure is also shown in Figure 6. A horizontal
force F is applied at node 100. All other datas are the same as in Example 2. There are 96 cross-
sectional areas selected as (non-shape) design variables in this example. This structure has 60,990
elements. The resulted structural stiffness matrix has 30,780 degree-of-freedom. Using the
variable bandwidth storage scheme® will require a real 1-dimensional array with 5,171,574 words
to store the stiffness matrix in the core memory. The average bandwidth for this stiffness matrix
is 168.

The performance of the entire finite element analysis and design sensitivity analysis (using
ADIFOR tool) on 1, 8, and 16 Cray-C90 processors are shown in Table 3. The total speed-up
for the ENTIRE PROCESS are 7.32 and 12.93 when 8 and 16 Cray-C90 processors are used,
respectively.

V1. Conclusions

Based upon the numerical results presented in this paper, the following conclusions can be
made:

l. Automatic Differentiation (ADIFOR)'® tool has been successfully applied to both simple
(TRUSS) and complex PLATE/SHELL!"" finite elements.

[88]

Both non-shape and shape design variables can be successfully treated.

3. For the first time (to the authors' knowledge), ADIFOR tool can be applied in a parallel-
vector computer environment for non-shape and shape sensitivity analysis.

4. The entire finite element and sensitivity analysis can be done with excellent parallel and
vector speed (using all 16 Cray-C90 processors).

VII. Acknowledgments

The financial support from NASA grant NAG1-858 are acknowledged. The authors are also
deeply indebted to Drs. L. Green, P. Newman, J. Barthelemy (all from NASA Langley Research
Center), C. Bischof (from Argonne National Laboratory) and A. Carle (from Rice University) for
helpful discussions during the ADIFOR user workshop (September 13-14, 1993), held at Building
1192C-E, the CFD Laboratory, NASA LaRC). Helpful discussions with Dr. A. Tessler on using
his plate/shell element (NASA Langley Research Center) is also appreciated.

VIII. References
1. T.J.R. Hughes, The Finite Element-Method, Prentice-Hall, Inc., (1987).
2. J.S. Arora and E.J. Haug, Applied Optimal Design, John Wiley & Sons, Inc., (1979).

3. R.T. Haftka, Z. Giirdal, and M.P. Kamat, Elements of Structural Optimization, Kluwer

188

w

Academic Publishers (1990).

R. Thareja and R.T. Haftka, "A Modified Version of NEWSUMT For Inequality and
Equality Constraints,” VPI Report 148, (March 1985).

G.N. Vanderplaats, "CONMIN: A Fortran Program for Constrained Function
Minimization”, NASA-TM X-62282, (1973).

C.H. Bischof and A. Griewank, "ADIFOR: A Fortran System For Portable Automatic
Differentiation”, Proceedings the 4% AIAA/USAF/NASA/OAI Symposium on

Multidisciplinary Analysis and Optimization, Cleveland, OH, pp.- 433-441, ATAA 92-4744-
CP, (September 1992).

J. Qin and D. T. Nguyen, "A New Parallel-Vector Finite Element Analysis Software on

Distributed Memory Computers,” Proceedings of the AIAA/ASME/ASCE/AHS 34% SDM
Conference, La Jolla, CA (April 19-22, 1993).

T.K. Agarwal, O.0. Storaasli, and D.T. Nguyen, "A Parallel-Vector Algorithm for Rapid
Structural Analysis on High-Performance Computers,” Proceedings of the
AIAA/ASME/ASCE/AHS 31" SDM Conference, Long Beach, CA (April 2-4, 1990).

J.F. Barthelemy and L.E. Hall, "Automatic Differentiation As A Tool In Engineering
Design," NASA-TM 107661, (August, 1992).

C. Bischof, G. Corliss, L. Green, A. Griewank, K. Haigler and P. Newman, "Automatic
Differentiation of Advanced CFD Codes for Multidisciplinary Design," Computing
Systems in Engineering, Vol. 3, No. 6, pp. 625-637, (1992).

A. Tessler, "A C° Anisoparametric Three-Node Shallow Shell Element for General Shell
Analysis," MTL-TR-89-72, (August 1989).

189

- -7
Figure 1: Computational Graph for y, - 20 b, - 20 b,

(2b,by = vZ b)) b (2b,+ 2 b))

-20b,
d

Yy =

Figure 2: Computational Graph for 4 Y3 40 b, b, -20

= -

dby (266, - YT B} (25,6, - VT b})

d 200,
Y3 (-)(mzbl) (%’)

H

db, d?
dy, (20 =b,) (2b,+2y2 b))
db, (b, (26, + V2 b)) P
dy, 20 b, 20 b, _
—3 = 1) (2b,) + 21 (1) (272 b
dbl(dz]()(_)(d2]<><v 9
Y3
20 b,
1 -

/ 11 pad

bF a —& ,

; F ‘ |

b1 b2 <

190

Figure 3. Block-skyline columns storage and block rows storage schemes

|
Pl

-k -
Block
Columns

\ (Intel)

P2
~ Block rows
b3 (Cray)
Pl \
P2

Figure 4: Information required to update row i

7] compietely Upsated

I Not completely Updated

191

Row i-NP

Row |

Figure 5: Clamped Plate - Structure

Ll oLl ///(/
/ /
/] 7
/! .
e \ £ .
/
/] Z
; /.
7 C
v
R 7 P
Figure 6: 2-D Truss Structure
80 bays
F
lco
INZINZ
1
|
190 stories
!
x
|
|
9 (1]
|
f
_ v

12"

192

(5)
ILE] | [5576.925, -4780.2198, 0, 0, 0, - 15934.066

at
3K _
—a7 [15934.068 , 5576.923, 0, 0, 0, -5576.923,)
3 [£99]
—37 =[21510.99, 5576.925, 0, 0, 0, 8.268F-12,]

Table 1: ADIFOR Derivatives of Plate Element Stiffness Matrix with Respect to Thickness
(Non-shape) Design Variable

193

Table 2: ADIFOR Derivatives of Truss Element Stiffness Matrix with Respect to x-coordinate
of Joint 2 (Shape) Design Variable.

el. suff [k] for member |

0.966667E+04 0.000000E+00-0.966667E+04 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
-0.966667E+04 0.000000E+00 0.966667E+04 0.000000E+00
0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

wr.k
_ , 5[]
Gradient of stiff [kK\DV 2 = ——— .
dx,
-805.55555555556 0. 805.55555555556 0.
0. 0. 0. 0.
805.55555555556 0. -805.55555555556 0.
0. 0. 0. O

el stiff [k] for member 5

0.494933E+04 0.371200E+04 -0.494933E+04 -0.371200E+04
0.371200E+04 0.278400E+04 -0.371200E+04 -0.278400E+04
-0.494933E+04 -0.371200E+04 0.494933E+04 0.371200E+04
-0.371200E+04 -0.278400E+04 0.371200E+04 0.278400E+04

3 k3
dx,

Gradient of stiff (k] w.r.t DV 2 =

32.995555555555 -284.58666666667 -32.995555555555 284.58666666667
-284.58666666667 -445.44000000000 284.58666666667 445.44000000000
-32.995555555555 284.58666666667 32.995555555555 -284.58666666667
284.58666666667 445.44000000000 -284.58666666667 -445.44000000000

194

Table 3: Parallel-Vector Performance For DSA of 80 Bays x 190 Stories Truss Structure Using
ADIFOR Tool on Multiple Cray-C90 Processors

Number of Cray-C90 Processors Speed-Up Factors

Tasks 1 proc. 8 proc. 16 proc. 8 proc. 16 proc.
(A) 0.4855% 0.09954° 0.07854° 4.88 6.18
® (%.9959%?0) (%.lli?g:) (%27515:) 726 13.11
©) 2.6290% 0.3568°< 0.2026% 7.37 12.98
(D) 0.1019% 0.1015%¢ 0.1018* N/A N/A
(E) 2.3717% 0.3034% 0.1558* 7.82 15.22
(F) 9.6934°% 1.2128% 0.6047°* 7.99 16.03

Entire

Process 16.2740° 222215 1.2591° 7.32 12.93

Notes:

(A) To generate column heights of stiffness matrix
(B) To generate and assemble stiffness matrix

(C) To factorize stiffness matrix
(D) To get static (forward/backward) solution (sequential computation)
(E) To generate the right-hand-side vectors for sensitivity equations
(F) To solve for displacement sensitivity vectors

* Wall-Clock-Time

195

Automatic Differentiation for
Design Sensitivity Analysis of
Structural Systems Using
Multiple Processors

by

‘Duc T. Nguyen', Olaf Storaasli®,

Jiangning Qin’, and Ramzi Qamar'

tMultidisciplinary Parallel-Vector Computation Center,

135 KDH Building,
Old Dominion University,
Norfolk, VA 23529-0241

*Computational Structures Branch;
NASA Langley Research Center,
Hampton, VA 23681

196

OBJECTIVES

1. To obtain accurate derivatives of
complex finite elements and/or
complex design variables

2. Design variables can be either
non-shape (such as areas,

thickness) or shape types (such as
joint coordinates)

— ——— ~
3. The entire solution process should
be parallelized and vectorized to
reduce solution time

4. Numerical wvalidation and
performance evaluation for the
proposed procedure.

197

MOTIVATION

Analytical (hand-coded)
derivatives are not
feasible for complex
finite elements and

shape variables

Finite difference
derivatives are
expensive and can be
inaccurate

198

| SSao0.1d
uonNjos aIua 9y} jo dals AloAd
duIZII0)D9A pue Sulzi|o|jeled

oyvr o ogen b Gowy w0 ey S
2219 {* 243 & INV aJ _-.Lo_os&n.

|001 (JOL1Aay) uolienuaiajl
dllewolny d8ulzi|lin

disn HOVOUddV

C

199

UNIQUE FEATURES OF
THIS WORK

1. Both simple and complex finite
elements (2-D truss, and 3-D
plate/shell) are treated.

2. Both (non-shape) design variables
(such as areas of truss members,
or thickness of plate and shell
members), and shape design
variables (such as joint
coordinates) are considered

3 The entire solution process has
been parallized and vectorized

4. EXCELLENT speed-up has been
achieved even on '"small-scale”
example.

200

GENERAL FORMULATION FOR
DESIGN SENSITIVITY ANALYSIS
(D.S.A))

® FEquilibrium Equations
x]{2) - {F) <1>

Take derivatives of both sides
of Equation (1) with respect to
design variable vector b

58[;?___1*{2}+[K]*%%§=[o] @)

® Sensitivity Equations

et (12420 C K], (7) @3)

o o b ob =

94./(”6/ frem. A SXCm.
I‘“(-«:z»c ! P -

fa.r‘.llel-\hr.‘or Ei’ Solver is
meeded Jor csmfcFp !

201

pxy]
J o :_ _... Vo
! \N« = A.U " MU \f
- jo o Jo / 7
T Y) ;N ﬂ v
ety o- Do D
A=)+ (-"x) h= g 9o- - Do D

INIW3T3 SSNAL d-¢ 404
v's'd

109015 HQ 3 \u

202

« | T] = EASY !

Q
—
b >4
[y 4
]
‘——-—)
QD
N
o
{ SN i
Q
[w)
Q-
S
|

(A) Non-Shape Design Variables
| E
I

(B) Shape Design Variables

a [k(l)]Global

= VERY TEDIOUS '

203

a&.a

T A9s A(da + 971 Axagg Az 0 Aa2)
_ ta— 18— K+ xaypczp (ka4 2y L+ Da—~ 1w ~\+k¢vm o
oK+ ag—21) .
oxp +O9E 274 o £ ¥
v o “4
sujamuig (O)4 0
Tz
* '
0

(A-1)T1 _

r o = Dl
i Ap d>,d

(o0g S,PPIUBIWDIZAl] BdUBISRY)

INIWI13 DNIANI]G 41Vid
AVINDONVYRIL 404 'V'S'd

?ueuﬁ (5) v\ E

204

Then

[k(ﬂ]Global = [k(@]Local * [T]

- - A

Functions of element nodal coordinates also!

(A) Non-Shape Design Variables
3 [k]
ot

Global =EA S Y '

(B) Shape Design Variables
8 k(]

G =VERY TEDIOUS !

205

‘pasn SI Juswa|e Ul
[3YS/aeld S J9IsSeL Xoly fiom siy} U

(JUBLUD|] S,49|SSA] X3V :2DUSI3JY)

INIW3ITE DONIANIG T1HHS/ALV 1
AVINDONVYRIL 404 'V'S'd

JION

206

F ~
—_
A

]

|

1

90 S’Tor\'m

1

|

|

|

{

¥

7
s I\
A
AN
s
- F
7
NI\
7
Ve
4
7

AFFLICATIONS

go l':avs

E xawm '-l< L (X’olm.}s/ 190 S}‘ariw

NEL 601770 ¢&.wew)‘j‘ (TﬂU!
NEQ] = 30/780 ﬁ&cb"fc'w)‘

"

NTERMS = 5,171,674 termms

AVERW = |GY cVer.\:)¢ Lo diiddly

NDV = 96 New-Shape
Acs.'(?'v\ \/Niaue)‘

S s S ok SIS

Ey;a.w\r“lé, 2 (| L-‘\Jl I fl’aflv])
NEL= S 2benments (TRUSS)

NEQ = 4 .
NDV = 8 seu-x’w_ oltiit}'m \/'a/h\L/

EXA\MF’C 3 (}7{.\}& /)’Tu-cl'ufé>

NEL = 32 clewds[Alex Tem{er's
f'LJ'e/SAJ(

NDV =75 /J‘Lur(

aba:j.. varinbles

SAOARARNI Y Y N

e

T ddded e

207

TN

— R $5920.4 x
(€6TD) [26| sl6STL | slTCTT | OVLTIL | 20U
€091 | 66°Z | 2sZ¥09°0 | 58CLTL | 2s¥£69°6)
TTUSL | T8 | 585510 | suPE0E0 | 2l LLET &)

VIN| V/N | 5s8L01°0 | 5551010 | 25610170 ()
86°CL | LEL | 59C0T°0 | 289G€°0 | 206C9°C (D)

(+Z¥S1°0) | (+€€¥L70) | (x9066°0)
LL'EL | 9TZ | sl €£0°0 | 50CEL°0 | 5s¢8S56°0 (9)
819 881 | 577582070 | 2256600 | 225558170 (V)
"201d
'Dold g} Q '0oid 9] 0ud g Doud |

5108\
wQD-bmmam_\ $10$532044 06D - ABID JO JaquinN | Sysel

IDNVYWAO4d3dd 13T11vVdvd
ANV SLTNSFY TVOIIAWNN

208

nel,ndofpe, nodes, ndofpn, nunrol, nummat, ire nbays, nstory,gg:
7, 4, 2*2, 8, 1000, O, 10, 300, —
*design variable, total memory needed= 1000, 7881649

rax. wall clock timef for gen+assem = 0.250323822

{z)/d(b) with respect to DV # 1000 -

d{z)/d(b) = 0.463915E-02 0.197448E-03 0.46391SE-02 0.127947E-03 0.463915E-02
d(z)/d{(b) = 0.584470E-04 0.463915E-02-0.110535E-04 0.463915E-02-0.805540E-04
d(z})/d{b) = 0.463915E-02-0.150054E-03 0.463915E-02-0.219555E-03 0.463915E-02
d{z)/d{b) = -0.289055E-03 0.463915E-02-0.358556E-03 0.463915E-02-0.428056E-03

ME, time for generate SD=1, 2.46547SE-2
ME, time for generate K =1, 0.250328442

ME, time for Factori. =), 0.234019218

ME, time for Solution =1, 2.2428906000002E-2
ME, time for (dK/db)*X =1, 6.526009938

ME, time for dX/db =1, 21.726178002

** Time in boundc =4.737786E-3

** Time in jointc =3.0296399999999E-4

** Time in apload =4.8300000000001E-5

** Time in elconn =3.33129E-3

** Time in materp =4.7050644E-2

i in colht =0.152899086§

TOTAL TIME:(nel,neq,ielm,nterms)28.991996244, 12300, 6600, 12300, 1865;;\

nel,ndofpe,nodes,ndofpn,nunrol,nummat,ireal¢nbays, nstoryl&ii)
, 4, 2%2, 8, 1000, o, 10, 300,('1000)

lesign variable, total memory needed= 1000, 7881649

max. wall clock timef for gen+assem = 0.143736066
d{z)/d(b} with respect to DV 2 1000

d{z)/d{b) = 0.463915E-02 0.197448E-03 0.463915E-02 0.127947E-03 0.46391SE-02
d{z)/d{(b) = 0.584470E-04 0.463915E-02-0.11053SE~04 0.463915E-02~-0.805540E-04
d{(z}/d{b}) = 0.463915E-02-0.150054E-03 0.463915E-02-0.219555E-03 0.463915E-02
d{z)/d{b) = -0.289055E-03 0.463915E~02-0.358556E—-07 0.463915E-02-0.4280S6E-93

ME, time for generate SD=1, 2.466528E-2
ME, time for generate K =1, 0.125706372

ME, time for Factori. =1, 0.141787986
ME, time for Solution =1, 2.2426734E-2
ME, time for (dK/db) *X =1, 3.275844468
ME, time for dX/db =], 10.83518028

ME, time for generate SD=2, 1.8168000000429E-5
ME, time for generate K =2, 0.12609603

ME, time for Factori. =2, 0.141645408

ME, time for Solution =2, 5.1287999999872E~-5
ME, time for (dK/db) *X =2, 3.28376691

ME, time for dX/db =2, 10.836083088

** Time in boundec =4.723914E-3

** Time in jointec =3.0290400000002E-4
** Time in apload =4.8348000000004E-5
** Time in elconn =3.331998E-3

** Time in materp =4.7076264E-2

* _Time in colht =3.3666912000001E-2
OTAL TIME: (nel,neq, ielm,nterms)14.514775074, 12300, 6600, 6150 186532

4

-.OTAL TIME: (nel,neq, ielm,nterms)14.528120334, 12300, 6600, 6181, 186532
N (q) 86532/

209

21, ndofpe, nodes, ndofpn, nunrol , nummat, ice nstory indv

7, 4, 2*2, 8, 1000, O, 10, 300,
4design variable, total memory needed= 1000,
max. wall clock timef foxr gentassem

d(z)/d(b) with respect to DV § 1000

bays,

7881649
0.106087758

d{z)/d{b) = 0.463913E-02 0.197448E-03 0.463915E-02 0.127947E-03 0.463915E-02
d{z)/d{(b) = 0.584470E-04 0.463915E-02-0.110535E-04 0.463915E-02-0.805540E-04
d(z)/d{b) = 0.463915E-02-0.150054E~03 0.463915E-02-0.219S55E-03 0.463915E-02
d{z)/d{(b) = -0.289055E-03 0.463915E-02-0.358556E-03 0.46391SE-02-0.428056E-03
ME, time for generate SD=3, 2.441805E-2
ME, time for generate K =3, 8.4435756E-2
ME, time for Factori. =3, 9.3954744000001E-2
ME, time for gemnerate SD=1, 2.2068600000003E-4
ME, time for generate SD=2, 2.5296000000008E-5
ME, time for gemerate K =1, 8.4171846000001E-2
ME, time for generate K =2, 8.452527E-2
ME, time for Factori. =1, 9.3851616E-2
ME, time for Factori. =2, 9.3939270000001E-2
ME, time for Solution =1, 6.4373999999923E-5
ME, time for Solution =2, 5.441399999%917E-5
ME, time for (dK/db)*X =1, 2.156280738
ME, time for (dK/db)*X =2, 2.168834262
ME, time for dX/db =1, 7.22125122
e, time for dX/db =2, 7.196945016
£, time for Solution =3, 2.2304856E-2
£, time for (dK/db)*X =3, 2.163674568
ME, time for dX/db =3, 7.211424354
** Time in boundc =4.723506E-3
** Time in jointc =3.0207599999998E-4
** Time in apload =4.8342000000007E-5
** Time in elconn =3.328746E-3
** Time in materp =4.6941834E-2
** Time in colht =)1.0283598E-2 _—— T T T e T T “““_‘*“v—?
TOTAL TIME:(nel,neq,ielm,nterms)9.621492162, 12300, 6600, 4100, 186532
TOTAL TIME: (nel,neq, ielm,nterms)9.607627608, 12300, 6600, 4131, 186532 |
TOTAL TIME: (nel,neq, ielm,nterms()9.721047816, 12300, 6600, 4131, lBéiii)

210

CONCLUSIONS

1. Automatic Differentiation (ADIFOR)
tool has been successfully applied to
both simple (TRUSS) and complex
(Alex Tessler’s PLATE/SHELL) finite
elements

2. Both non-shape and shape design
variables can be successfully treated.

3. For the first time (to the author’s
knowledge), ADIFOR tool can be
applied in a parallel-vector computer
environment for non-shape and
shape sensitivity analysis.

4. The entire finite element +
sensitivity analysis can be done with
excellent parallel and vector speed
(using all 16 Cray-C90 processors)

211

SESSION 6 Mosaic and the World Wide Web
Chaired by

Clyde R. Gumbert and John W. McManus

6.1 Introduction to the World Wide Web and Mosaic -Jim Youngblood
6.2 Use of World Wide Web and NCSA Mosaic at Langley -Michael Nelson

6.3 How To Use the WWW To Distribute Scientific & Technical Information (STI)
-Donna Roper

212

356079 [10048 Nes. 16463

Introduction to the World Wide Web and Mosaic

F

by Jim Youngblood, Lockheed Langley Program Office

Special thanks to Earl Spratley of Lockheed Langley Program Office for
assistance with the graphics.

6/13/94 5:30 p. m.

IMPORTANT: This document is a hypertext file. If you are reading it in
printed form you can get an electronic version by using your Mosaic
browser's "Open URL" feature. This document's URL is
"http://sti.larc.nasa.gov/demos/mosaic-general.html". The electronic version
contains Hyperlinks that allow you to access reference documents in other
parts of the World Wide Web. (All of this is explained in more detail below.)

Introduction

This tutorial provides an introduction to some of the terminology related to
the use of the World Wide Web and Mosaic. It is assumed that the user has

some prior computer experience. References are included to other sources of
additional information.

The concepts are:
» The World Wide Web
» Browsers
» Mosaic

» Hypertext
» Hypermedia
* Distributed Hypermedia

« HTML

213

If you are reading this document from within Mosaic and you are familiar
with some of these concepts and want to skip to an unfamiliar section just
place your mouse cursor on the section you wish to read and click the mouse
button. If you are reading this document in printed form, the sections proceed
in the order given above.

FiP
TELNET
GOPHER
WAIS

What is the World Wide Web (WWW or W3)?

The world wide web was first conceived at the CERN high energy physics
research laboratory in Switzerland as a way to quickly share physics research
results over the Internet. The shared data was often graphical in nature so
existing methods of distributing text were not adequate. CERN defined
standards for uniform access methods to all forms of media on the net. There
are several different WWW clients; Mosaic is emerging as the most popular.

The WWW attempts to find uniform ways to access all of the current Internet
resources including:

214

* Gopher (An on-line card catalog of many on-line libraries.)

* WAIS (An on-line catalog browser and retrieval mechanism)

» FTP (File Transfer Protocol) -- A way to transfer files to and from
other computers to your computers.)

» Usenet (The worlds LARGEST computer bulletin board)

- telnet (A way to log into other computers)

* hytelnet (A menu driven version of telnet)

* hyper-g (A hypermedia system built on existing large databases,
Computer Aided Instruction lessons and a general purpose hypermedia
encyclopedia)

» techinfo (Another Internet based information -- similar to Gopher)

- texinfo (Based on Donald Knuth's TeX typesetting system, texinfo
allows one file to produce both on-line help files and a printed manual)
 man pages --UNIX manual pages on-line (help files)

« hypertext documents

» "Phone book" services (On-line "White" and "Yellow" pages)

Browsers

A browser is simply a software application that recognizes the standards that
define the World Wide Web. Mosaic is not the only browser for the World
Wide Web. Some of the other browsers are:

* Cello for Microsoft Windows

* DosLynx for MSDOS

 Samba and MacWeb for the Macintosh

* Chimera, tk WWW and MidasWWW for X Windows System
 Lynx text mode browser for UNIX

215

What is Mosaic?

Mosaic is a distributed hypermedia browser for the World Wide Web
(WWW or W3). Mosaic was originally developed in the USA at the
National Center for Supercomputer Application (NCSA) at the University of
Illinois at Urbana/Champaign, and is in the public domain. Mosaic was
originally X-mosaic for X Window System for UNIX. Mosaic has become so
popular that it has been renamed from X-mosaic because it is now available
for X Window System, PCs and Macs. Mosaic is available in version 2.0 for
X Window System and PCs. Version 2.0 Alpha for the Mac was released on
June 10, 1994. It is not known how stable and usable this release is. Version
1.0.3 for the Mac is the current fully released version. This version does not
have "Forms Support".

Mosaic provides a more "user friendly"” interface to existing Internet services
such as Archie, Gopher and WAIS, which allow users to search for and
retrieve data from sources throughout the world. Mosaic provides for direct
transfer and display of images, motion pictures and sound.

216

A Hypercard

e e T

P ey ¥
------ u dl

Gt aa et e O R Nl

Main Topics for Audio Help
| clicked hete... > Audio Palette Basics
About Sound
Using Sound in Stacks
Editing Sound

Recording Features

Click s subtopic te go to it:

...and got this. e Audio Palette

V *\.¥hat you need to use Audio Palette
* Opening the Audio Palette

¢ Audio Palette commands

AAMIIAIEAS

RAAEAXA NN, :

. .
Overview [
e NS, ’ S r M

NI
* s A

AR AREER X AN ZACT IR AN T RRAALA
¥ Leave Help | Quick View
RAXXER DD LRAERAE AAMRERAAX]

What is hypertext?

Hypertext is text in a document that is highlighted in some way. When the
text is selected, with a single mouse click you will be taken somewhere else
in that document or to another related document. We have all probably had
some experience with hypertext. PC users have seen hypertext in Microsoft
Windows Help--you can click on highlighted text and get more detailed
information about that text. Macintosh users first experienced hypertext with

the product HyperCard. Many Macintosh products now have hypertext
interfaces.

217

What is hypermedia?

Hypermedia is an extension of hypertext that include pictures, sound, and
motion pictures. After a single click on an icon (also called hyperlink -- see
below) that represents a picture, sound or motion picture, the object will be
displayed, the movie played or the sound produced.

218

« URL (Uniform Resource Locator) specification (CERN)
* A Beginner's Guide to URLs

« URLCurline Up to Universal Resource Locators, by Eric S. Theise

Hotlist

Using the hotlist is usually the safest way to be sure that you can come back
to interesting information that you have found with Mosaic.

Depending on your version of Mosaic, Hotlist will have its own pull down
menu or be found under the "Navigate" pull down menu. If you find a
particularly interesting Mosaic screen that you would like to view again, pull
down the hotlist menu and add the document to the hotlist. (When you quit
Mosaic on the Macintosh, remember to save the changes to the hotlist.) Other
WWW browsers may call this same feature "Bookmarks".

Hints

The "S" with a globe in it the NCSA Mosaic symbol and is an
indicator that a file transfer is taking place between your computer and a
remote computer. This gives you status information on what Mosaic is doing.
If a transfer seems to be taking too long or not doing much, you can click on
the globe symbol to abort the transfer. (What is too long will depend on the
speed of your network connection and how heavily loaded the network is,)

PC Mosaic has a number of problems including being difficult to configure.
If you can use X-windows from your PC, it is best to start an X-windows
session and use a UNIX version of Mosaic from your PC.

Forms Support is a feature that makes searching for information much

easier. The best way to use forms is with X-Mosaic on a UNIX platform.

Mosaic for the Macintosh is currently out in version 1.0.3 and does not
221

support forms. (Mac Mosaic 2.0 Alpha was released on June 10, 1994. At
this time it is not known how stable this release is.) PC Mosaic has problems
as stated in the paragraph above.

JARGON

Here is some of the jargon you will encounter while using Mosaic and my
attempt to explain its meaning:
- Archie - Certain Internet sites maintain lists of the files available at all
Internet FTP sites. When you request an Archie search for a given file at
one of these servers it responds with a list of all known FTP sites that
have the file.
« FAQ - (Frequently Asked Question) Questions that are often asked
by new users of the Usenet news services. Many of the Usenet groups
create FAQ files to keep network traffic down and avoid repeatedly
responding to common questions.
 FTP (File Transfer Protocol) The method used most commonly to
transfer files from one computer to another on the Internet. WWW gives
FTP a user friendly interface.
« Gopher - A client/server distributed information delivery service.
Gopher is like a library where you can browse other librarie's card
catalogs and have the material you want automatically sent to you. A
deficiency is that one library may have a subject called "Folklore,
American" and another may call the same category "Funny Old
Stories". (Adapted from The Whole Intemnet User's Guide & Catalog by
Ed Krol)

« HTTP (HyperText Transfer Protocol) A protocol used by the WWW
to transfer hypermedia.

e URL - (Uniform Resource Locator) An extended form of file names
that locates files and other resources anywhere on the Internet.

« WAIS - (Wide Area Information Service) A client/server distributed
information retrieval service. WAIS is like walking into a library with a
quote and have the library automatically check out everything that
contains it. Think of WAIS databases as private libraries devoted to a

particular topic. "In Gopher, you find resources by looking through a
222

T

TELNET,
GOPHER,

wAIS...?/

Distributed Hypermedia

Computers have become more sophisticated and able to handle graphical
and sound programs. Distributed hypermedia is merely hypermedia (text,

sound, picture or movie files) that resides on multiple machines and is
accessible via a network.

Hyperlinks/Home Page

Hyperlinks are highlighted text, pictures or symbols in a document that

indicate a connection (or link) to other material. When you click on a

hyperlink with your mouse you directly access the item that the hyperlink

refers to. These documents, pictures, videos, or sounds are files that may

reside anywhere on the Internet. Your computer retrieves them as files and

opens the proper application to display them as documents, pictures, videos,
219

or sounds.

A "Home Page" is a hypermedia document that is on the World Wide Web
to give information about the posting organization or project. Usually the
home page will aim to be eye catching by including a logo for the
organization and some picture of the organization's activities. Most home
pages also include hyperlinks to other multimedia documents about the
organization and related organizations.

HTML

HTML stands for Hypertext Markup Language -- a meta language used to
write the hypertext pages of the WWW. The easy to read text that you see on
your screen actually comes to you in a format that your computer must then

read and format into a form suitable for your display. For example: the title of
this section actually looks like:

 <h3> HTML </h3>

HTML is important in other ways that Donna Roper will cover in her
presentation.

Click here for Donna Roper's presentation on HTML

URL

URL stands for Uniform Resource Locator. A URL may be thought of as an
extended filename that lets you find a file anywhere on the Internet. The
URL also can have information about what kind of a file it is and other
information. All versions of Mosaic have the option "Open URL" under their
"File" pull down menu. The URL becomes useful when you see a statement
in your email like "The LaRC home page URL is

http://www larc.nasa.gov/larc.html" To access the LaRC home page all you
need to do is pull down the Mosaic "File" menu and select "Open URL"
then type the string "http://www.larc.nasa.gov/larc.html” (without the quotes).

220

sequence of menus until you find something appropriate. WAIS does
the same thing, but it does the searching for you. You tell it what you
want: it tries to find the material you need." (Adapted from The Whole

Internet User's Guide & Catalog by Ed Krol)

Ways to find out more about the WWW:

» The WWW FAQ (Frequently Asked Qestions with answers) is very
good.

* Read the LaRC Usenet news group "larc.users.mosaic".

* Read the NASA Usenet news group "nasa.infosystems.www".

* Read the Usenet news group ""comp.infosystems.www".

* The tutorial at URL
http://matrix.ssd.intel.com:8008/BrownBag/brownBag.html is excellent.
« A tutorial at URL

http://navigator.jpl.nasa.gov/section314/papers/www-seminar/

www-seminar.html is more technical but still good.

Jim Youngblood (j.r.youngblood@!larc.nasa.gov)

223

Use of World Wide Web and NCSA Mosaic at Langley

CSTC Workshop, H. J. Reid Conference Center, 06/16/94

Michael Nelson, Information Systems Division

http://blearg.larc.nasa.gov/~min/cstc/

224

[« [2]p¥]

Use of World Wide Web and NCSA Mosaic at Langley

A Brief History of WWW at Langley Research Center
The Impact of WWW at Langley
Various Projects That Have Used WWW Successfully
o Technology Opportunities Showcase
o Langley Distributed Active Archive Center - EOSDIS
o Langley Technical Report Server
o Langley High Performance Computing and Communications K-12 Program
o COSMIC Replacement
The Future of WWW at Langley
What’s Next?

225

[ed 2]

A Brief History of World Wide Web (WWW) at Langley

Langley’s Leadership Role

e Langley Home Page became public on July 25, 1993
e The initial set of pages were quickly followed by a number of other contributors
e The Langley Home Page is almost a year old
e The Langley Home Page was the first NASA center home page
e Why is the ‘75 Years’’ logo used?
' o To remind ourselves and others that leading the way is nothing new for
Langley
o And while the technology may be new, the innovative spirit is not

NASA’s Leadership Role

e Archie Warnock and Jim Gass of GSFC lead NASA Home Page effort, with input
from all of the centers

e Communication through the NASA USENET newsgroup, nasa.infosystems. www

e The first version of the NASA Home Page became public on September 8, 1993.

e NASA continues to lead federal agencies in deployment and use of WWW

e The NASA Web is a model for grass—roots involvement and inter—agency
collaboration

226

[[21p¥

Charateristics of the Langley Web

Architecture of the Langley Web

¢ Canonical list — *‘one stop shopping’’
¢ Logically central, physically distributed

¢ Langley home page is largely a collection of pointers to other WWW servers at
Langley and beyond

e Macs, PCs, and UNIX workstations have HTTP servers
The Langley Web Benefits From a Large Number of Contributors

e Over 20 public HTTP servers (plus several others in testing or private)

¢ Everyone is responsible for maintaining the information they know the most about
¢ It encourages experimentation

o Everyone is involved with the new information distribution methodology: Its not just
"send me an e-mail"", its now also ''send me the URL"

227

(1B

Impact of World Wide Web at Langley

No Longer the “‘Best Kept Secret in the Government”’

e Statistics not kept until August 27, 1993

o Number of Langley home pages served:
e At one point, the Langley home page was the ‘*18th Most Linked to Home Page’* (source: a Univ.
of Washington Web Crawler)
e 797000+ HTTP connections with main Langley WWW server
e Accesses to the main Langley WWW server (www.larc.nasa.gov)
0 1700+ Langley Computers
© 5100+ NASA Computers
© 62000+ Computers World-Wide
e www larc.nasa.gov is currently a non—dedicated, SPARCstation [PX, 64 Mbytes memory, 1.5
Gbytes disk

What is the Impact on the WWW Users?
e Move from zero—sum to non—sum information distribution model
o Perhaps most importantly, connecting:

o People with technologies
0 People with people

228

[z

Some Langley Projects that have employed WWW

These Projects Have Increased Awareness and/or Usage with WWW

44 - allCC
e COSMIC Replacement
Important Notes About the Above Projects

e Each represent ‘‘firsts’’ in their respective areas
e The projects are accessible through a common interface

A Number of Braches, Divisions, Groups, Teams, and Initiatives Use WWW

e Check the Langley home page for a complete and current list!

229

ed (2] 3}

Technology Opportunities Showcase

A Diverse and Dynamic N—team Assembled to Contruct the TOPS Database

e Number of TOPS home page visitors since 6/01/94:

e TOPS builds upon other on-line databases, such as the X.500 phone book information,
the Langley Technical Report Server, and existing Langley organization home pages.

e Team members: Kennie Jones (ISD), Jim Fenbert (ASAD), Kathy Stacy (ISD),
Gretchen Gottlich (PRMO), Kurt Severance (ISD), Michael Nelson (ISD), Rick Hoff
(STID), Dan Axelrad (STID co-op), Chris Matthews (CSC), David Bianco (CSC),
Tricia Smith (ISD)

e Others latered contributed tours, reports and other information

e Features: all data sheets; keyword searching; photographs; ‘‘clickable’” TOPS
floorplan; automated metrics; and on—Ine requests for more information forms

e POC: Kennie Jones, K.HJONES@LaRC.NASA.GOV, 864-6720

e http://www.larc.nasa.gov/tops/tops.htmi

230

[ed [Z1p¥

Langley Distributed Active Archive Center (DAAC)

A Component of the Earth Observing System Data Information System (EOSDIS)

e The Langley DAAC uses a home page to:

O Increase awareness of the Langley DAAC

o Provide various documentation sets

o Provide user services information

© Launch the innovative Langley DAAC Data Ordering System X Window

System/Motif client

Some projects currently served with DAAC: ERBE, SAGE, FIRE, SRB, ISCCP
DAAC use of WWW has enabled several hundred more data set transfers
POC: Roy Dunkum, R.C.DUNKUM®@LaRC.NASA.GOV, 864—6589
http://eosdis.larc.nasa.gov/

231

(2]

The Langley Technical Report Server (LTRS)

LTRS is an Experimental Report Distribution Project

Distributes ‘‘unclassified, unlimited’’ technical reports and papers

Began January 1993 as an Anonymous FTP server only — (WAIS searching adding
shortly thereafter)

In the first 6 months (1/93 — 7/93), 2400+ reports distributed (pre— WWW)
WWW enabled integrated searching and retrieving in October 1993

As of 6/94, 10000+ reports distributed

WWW provides a more intuitive and friendly interface to LTRS

LTRS concept is being replicated across NASA via the NASA Technical Report
Server (NTRS)

RPPB (former — Technical Editing Br.) provides formal publications; others are
contributed by the authors

LTRS team members: Michael Nelson (ISD), Gretchen Gottlich (PRMO), David
Bianco (CSC)

POC: Michael Nelson, M.L.NELSON @LaRC.NASA.GOV, 864-8511
http://techreports.larc.nasa.gov/ltrs/ltrs.htmi

232

[« (2] bl

The Langley High Performance Computing and
Communications K-12 Program

The Langley HPCCP K-12 Program is Active!

¢ Five area high schools are currently class C registered networks on the internet
(e.g., patriot.denbigh.nn.k12.va.us is a valid Internet address)

¢ Three new schools are scheduled to be online this fall

e Each school currently receives its network connection from Langley over standard
phone lines, and has a collection of donated Sun UNIX workstations and Apple
Macintoshes

e The teachers are learning about computation, and integrating it into the curiculum

¢ All volunteer effort: Gary Warren (FMAD), Leon Clancy (ICASE), Kelvin
Edwareds (AS&M), plus others

The Langley HPCCP K-12 Program Has Received Broad National Recognition

e The Langley K~12 program is a fixture on educational WWW pages

e The Langley host machine for K—12 has registered over 20000 individual file
accesses

e POC: Gary Warren, G.P. WARREN@LaRC.NASA.GOV, 864-2162

e http://k12mac.larc.nasa.gov/hpcck12home.html

233

(€23

A Langley COSMIC Replacement is Planned

The WWW is a Natural Medium for Langley Computer Program Distribution

e A prototype is planned for this summer

¢ All non— sensitive, classified, or controlled programs would be available for free and open
distribution

Inspired by Oak Ridge National Lab’s Netlib, which processed over 1.8 million requests in 1993
Implemented by a TAG~-lead N-team

Will build upon work already done with the Langley Technical Report Server

Sample codes are sought

POC: Dan Sydow, P.D.SYDOW @LaRC.NASA.GOV, 864-3180

234

[z

The Future of WWW and Mosaic at Langley?

Complete the Langley Web

e Currently, only a portion of Langley’s activities are represented

e Everyone should be able to maintain at least minimal information about their
organization or project

e Automated inclusion of on-line organization trees, functional statements, etc.

Further in the Future...

e A wider choice of WWW clients, both commercial and freeware
© Mosaic has been licensed to several companies for commercial development
o NCSA Mosaic will continue to develop and remain freely available

Tighter integration of all WWW documents

Better searching tools

Better authoring and data management tools

Sophisticated ‘‘Knowledge Robots’’ that search, retrieve, and filter various

information sources according to personal preferences

235

[EI»

Concluding Remarks

The World Wide Web and NCSA Mosaic Have Changed the How Langley Does Business

e Langley and NASA lead in the adoption of WWW technology to accomplish our Mission
e Several projects and programs have already enjoyed tremendous success using WWW

e WWW is now an integral tool for technology transfer both out of an into Langley

e Langley is no longer a ‘‘secret’’; and less and less means Air Force or CIA

e Langley must continue to increase the number of its WWW providers and users

Being on the WWW is Simple, Effective, and Fun!

e Some jpstructions are available from the Langiey home page
e Find a branch, project or other home page that you like and adapt it

e Come to the Internet Fair, June 28, H. J. Reid Conference Center, Langley Research Center, 8am -

3pm for more information
o T . ill explain | {if .

236

356 €| \\0060 N95- 16465
How To Use the WWW To Distribute STI /o o

by Donna G. Roper

This presentation explains how to use the World Wide Web (WWW) to distribute your scientific
and technical information (STI) as hypermedia. WWW clients and servers use the HyperText
Transfer Protocol (HTTP) to transfer hypermedia documents, that is, documents containing links to
other text, graphics, video, and sound. The standard language for these documents is the
HyperText MarkUp Language (HTML). HTML documents are simply text files with formatting
codes that contain layout information and hyperlinks. To make your scientific and technical
information available to the WWW as hypermedia documents, you must learn how to create HTML
documents and make them available on an HTTP server. You can create HTML documents with
any text editor or with one of the publicly available HTML editors or converters. You can also use
HTML to include links to image formats such as XBM, GIF, TIFF, JPEG, MPEG. Most of the
information that you need to get started is available on the Internet. This presentation is available
on-line. The URL is http:listi.larc.nasa.gov/demosiworkshopl/introtext.html

237

Using the WWW for STI Allows Users To

« Refer back to equations, figures, and text in previous sections

» Access references that are available on-line

« Attach personal, group, or public annotations to documents

» Download figures for manipulation or inclusion in other reports
« Download computer codes, programs, and documentation

« Access simulation models, data files, and videos

« Browse files in HDF (Hierarchical Data Format), a machine-independent file format that
allows arbitrary grouping and annotation of heterogeneous data elements.

« Send scientific data in a hypermedia document across the network for graphical and statistical
inspection and analysis on programs such as

« Collage, NCSA's synchronous collaboration tool for scientific data analysis and
manipulation.

« Polyview, NCSA's collaborative tool for three-dimensional geometric and polygonal
data analysis.

- Data Management Facility (DMF), NCSA's scientific data management and archival
system.

Distributing STI on the WWW as Hypermedia

* Learn How To Create HTML Documents

» Make Documents Available on an HTTP Server

d.g.roper@larc.nasa.gov

238

Hypermedia Documents Contain Links To

+ Text

(7-bit ASCIT)

+ Graphics

(e.g., Graphs, Photos, Line Drawings)

- Video
(e.g., Crack Propagation or Air Flow Over Wing Configuration)

+ Sound
(e.g., Engine Noise, Narration)

HyperText Transfer Protocol (HTTP)

HTTP is a stateless search, retrieval, and manipulation protocol with the speed necessary for a
distributed hypermedia information system.

These HTTP Servers Are Available on the Internet

+ NCSA httpd

- BSDI Plexus

* GN (a gopher/http server from NWU)

+ CERN HTTP server

* MacHTTP - a Macintosh HTTP server

» serweb - Windows 3.1/NT HTTP server (requires winsock)
« HTTPS - Windows NT HTTP server (for PCs and Alphas)
* NCSA httpd for Windows

Your system administrator should be able to help you set up the http server. If not, contact
m.l.nelson@larc.ngsa.gov about serving files from www.larc.nasa.gov

239

HyperText MarkUp Language (HTML)

HTML documents are 7-bit ASCII files with formatting codes that contain layout information and
hyperlinks to text, graphics, video, and sound.

How To Create HTML Documents

» Create HTML Documents With any Text or HTML Editor
« Create HTML Documents With a Word Processor and Export as ASCII

« Create Documents With a Word Processor and Convert to HTML

Sample HTMIL Document

HTML References

» A Beginner's Guide to HTMI
. h n Writing Documents f W
+ Elements of HTML Style

 HTML Tutorial

Tips For Writing HTML

« Save As HTML Option

« Open Local Option

240

Sample HTML Document

<hl> Heading Level One </hl>

This text is a sample paragraph. Paragraphs must be separated
with the html paragraph tag because

blank lines and tabs are ignored.

<>
This text is another sample paragraph. You can use html tags to display <i> italic text<,

<h2> Heading Level Two </h2>

This text contains an unordered list.

 Item 1
 Item 2

Heading Level One

This text is a sample paragraph. Paragraphs must be separated with the html paragraph tag because
blank lines and tabs are ignored.

This text is another sample paragraph. You can use html tags to display italic text and bold text.

Heading Level Two

This text contains an unordered list.
sJtem 1
*Item 2

HTML Link To Another Document

You can link regions of text or images to another document or image as well as to a specific section
in a document. Here is a hypertext link (called an anchor) to the pext document.

Here is the HTML tag:

 next document

241

Mosaic Can Display Inline Images in Two Formats
« XBM (X Bitmap)

* GIF (Graphic Image Format)

For example, here is the logo for our division

Here is the HTML tag:

Mosaic Can Open External Images in These Formats

+ XBM (X Bitmap)

* GIF (Graphic Image Format)

» HDF (Hierarchical Data Format)

* PS (PostScript Format)

» TIFF (Tagged Image File Format)

* JPEG (Joint Photographics Expert Group)
* MPEG (Motion Pictures Expert Group)

« Any Format For Which You Have a Viewer

Here is an inlined image (thumbnail) with a hypertext link to a higher resolution photo in JPEG
format.

242

Here is the HTML tag:

Displaving Scientific Equations

243

Display Scientific Equations As Inline Images

Here is an example of an equation in XBM format:

e =1 Man _ -1 Mon
g =tfan —| = tan
Map (Ty /Tt My sin A
(14 K)
Here is an example of the same equation in GIF format:
§ = tan~1 (MZZn) ~ tan—1 Man
Mzp (T /Tp) "My sinh 55

A separate HTTP connection must be made to retrieve each inline image, which is stored in a separate

file. Thus, documents with multiple images take longer to download and require more storage for the
document elements.

Sample Documents With 21 Equations

« Equations converted to X Bitmaps: 229 KB total: 16 seconds
« Equations converted to GIFs: 13.8 KB total: 11 seconds

(Source: "Thoughts On Scientific HTML Documents” by M.C. Grant from Stanford University.)

Problems With Displaying Scientific Information

« HTML Does Not Support Greek & Mathematical Symbols.
-« Equations Are Stored in Multiple Files.

 Some HTML Converters Ignore Equations.

« Equations Are Difficult To Align With Text.

« Equations Are Not Scaled To Match Text.

* Superscripts & Subscripts Are Not Supported.

« Tables Are Difficult To Format.

The next version of HTML (cglled HTML+) will address some of these issues.

Sample Table

Table 6. Parallel Golden Block Method

No of No. of Time Speedup for
Proc. Points (sec) PGB GS
1 2 0.355 1.00 1.00
1 12 0.540 1.00 0.66
2 12 0.277 1.95 1.28
3 12 0.187 2.89 1.90
4 12 0.144 3.76 2.47

245

7.1
7.2

7.3

7.4

SESSION 7 Graphics and Image Processing
Chaired by

David C. Banks

Image Tools for UNIX - David Banks

From Computer Images To Video Presentation: Enhancing Technology Transfer -
Sheri Beam

Data Visualization and Animation Lab (DVAL) Overview - Bill Von Ofenheim ,
Kathy Stacy

Data Visualization and Animation Lab Applications - Kurt Severance and Mike
Weisenborn

246

356/20 110051 N95- 16466

Image Tools for UNIX
David Banks, ICASE

There are many tools available for digital image processing in the UNIX environment. This talk
features two tools that are simple and useful: xv and pbmplus.

The xv image viewer runs under the X window system. It reads images in a number of different
file formats and writes them out in different formats. The view area supports a pop-up control
panel (activated by pressing the right-most mouse button). This control panel has a file selector, a
menu bar, and several buttons at the bottomn. The “Algorithms”™ menu item lets you blur an image.
Why would you want to blur an image? One reason to blur is that you might wish to shrink the
image. Without blurring first, a “shrink” operation generally obliterates any of the fine details that
are in the full-size image. The bottom buttons let you flip, crop, and resize an image.

The “xv” control panel can also activate the Color Editor. The Color Editor displays the image’s
colormap (if it has one). You can select individual elements of the colormap and change their
color. This is especially useful if the image has a solid-color background that you wish to change.
The Color Editor also applies global changes to the image color. These changes include re-map-
ping the hues, setting the white-balance, setting the color saturation, and changing the overall
intensity mapping. These operations are useful for preparing an image to be printed on a medium
that has special color characteristics. As a simple example, color monitors have a wide range of

brightness characteristics. An image can be adjusted to match the settings on different display
devices.

The xv image viewer is available from the internet at various ftp sites. A postscript manual is
available on the world wide web (WWW). It describes a licensing arrangement with the author (at
$25 per machine), but his phone number is no longer valid and neither is his e-mail address. Pre-
vious versions of the viewer (before version 3.0) did not mention a license.

The “pbmplus” package is a set of tools designed to perform image processing jobs from within a
UNIX shell. The acronym “pbm” stands for “portable bitmap.” A bitmap is a straightforward

encoding of a black-and-white image. In a pbm file, zeros and ones represent black and white dots
in arectangular array. A portable graymap uses a larger set of values to encode different levels of
gray from black to white. A portable pixmap uses triples of integers to encode the red, green, and

blue components of each pixel in an image. A portable anymap encodes any prescribed number of
integer values for each pixel.

Like “xv”, the pbm tools can convert images from and to many different file formats. There are
more than 100 individual executable programs in the toolkit; most of them convert images from
one format to another. The “pbm” tools do not provide a stand-alone interactive program like
“xv” does. Instead they act as filters, taking images as input and producing images as output.

The source code and man pages for “pbmplus” are available by ftp. This software is in the public
domain.

247

i q«mvw
Rt

suoijelado abew swio}iad

$10]09 sup3

ez

Sleuwlio} ajl} SII9AU0?

daps wagsa no@lasagl

D2
e

Aapprig uyof Aq

sdo J0jo

anjea 10jo:

Asusiuj

uoljeinies
) aoueje;

paanpai siubiybiy eidas = aosuejeq aliym

pajeinjesun jeuibLO

Frkgiessid

aonpal
B iniq

Ajuo
aanpal

s|ielap auij spualxa buirnj
sjie}ap auy sajelalijgo bupjuy

juny mooc>x\m:o=mo__o_a<\x= oe’'jo wo* ga\\ &E |
MMM U0 Jenuew E:oﬂ.woa

n_::ou\mho.xdt. |
dy eia sjqejieay

suoiljesado abew swiojiod

S)}ew.o} aji} SHeAUO)

.dewnq ajqepod, = wqd

SaullnoJ 6Z1L J0 68

82T 8ZT 8T
8eT 82T 8ZT
8ZT 8CT 82T

GG6¢ 0 0 §9&c¢
GGZ 0 0 S&c

GGZ 0 0 SST
qg b uJ

-]

% pue x € ;. abeu
ld v sojeubisop S

46 0] 1 oAU09I pue
.:m lIEWS =< Emm.:mEm th.EnE

‘wbd-jews < wdd- __mEm EmaSE%_

e 3 JULIYS
wdd jews < Ec_m.._s_n G0 m_mochn

wdd-njq < Ec_n m_o_ EooEmE:a

sabed uew sapnjoul aji} e

soiydesb/qnd/woa-oap-iadasyajel
quiuoo/bio x-dy
nob-qjea-dy

dy el ajqejleay

356122 /10054 N95- 16467

From Computer Images to Video Presentation:
Enhancing Technology Transfer éz;’é('
b

Sheri Beam
Hampton University

With NASA placing increased emphasis on transferring technology to
outside industry, NASA researchers need to evaluate many aspects of their
efforts in this regard. Often it may seem like too much self-promotion to
many researchers. However, they should first take a long, hard look at how
industry promotes itself.

Industry has been in the video production business for years. Upon
a close examination of sales, advertising, public relations and training,
video is used everywhere. In fact, in many cases, the quantity of outside
production has often dictated the need for many industries to build their
own in-house production facilities. In marketing themselves and their
products through the use of videotape, industries have been educated by
film and video professionals to expect a certain level of quality and
sophistication. In addition, industry professionals are familiar with
current television programs, like NOVA, which reinforce what they know
about the state of the art of video. Therefore, anyone who wants to do
business with them, must meet on a level playing field by emulating these
very same video production standards.

Today the most typical presentation method at NASA is through the
use of vu-graphs (overhead transparencies), which can be effective for text
or static presentations. However, for dynamic, full-blown color and sound
presentations, the best method is videotape. In fact, it is frequently
more convenient, because of portability and the availability of viewing
equipment. Due to the nature of its ease of operation, both in the
recording and playback, coupled with the fact that viewing television is
passive, many people suffer from the misconception that creating a video
production is alsc a simple and passive activity.

Although a NASA researcher may not use the same approaches to
Create a computer—-generated presentation as an entertainment program, some
aspects are essential for both if they will eventually be viewed on a video
monitor. The intended audience must be identified, as this will help to
determine the level of technical content, as well as the length of the
presentation. A good presentation can be compared to a good story. It has
a beginning, a middle and an end. For technology transfer purposes, a
researcher should try to introduce the research images, give the details of
the research, and review the images and information presented.

When creating the computer images for the presentation, a major
consideration is the viewing environment. The size of the space, plus *he
size of the monitor screen, plus the number of people viewing the
presentation should determine the number of screens necessary for an
effective presentation. Since the most common videotape used in the United
States is still VHS (1/2") NTSC (National Television Standards Committee)
format, the computer images will have to meet certain requirements in order
to maintain the possible best guality through the transfer process.
Although the computer has the ability to accurately reproduce a multitude
of colors in intense saturation levels, the video monitor has much more
limited capabilities. Primary colors, often the first choice of the
researcher, are particularly difficult to reproduce.

266

Screen composition is another important consideration. At present,
video monitors typically have a three by four screen ratio. With this
basic horizontal format in mind, a researcher can create more aesthetically
pleasing images by following established principles from great artists,
including foreground, middle ground, background, balance and lighting. If
the image is animated, employing accurate simulation to reality, including

initiation, direction, smoothness, and completion are important criteria to
follow.

It may take many hours to create and render just one frame of the
image, but real time video runs at 30 frames per second. A researcher
needs to keep this in mind when generating animations and determining how
long they should run. One that runs slowly due to a lack of frames

(e. g. 6 fps) will also not run smoothly. It is better to play it more
frequently at a faster rate.

Since a researcher may not always be available for the actual
presentation, professionally edited audio narration on the videotape can
make it an effective stand-alone product. Writing the script before
editing the images facilitates matching picture and sound. Although a
technical paper of the research may have been previously published, it will
have been written for the eye and not for the ear. For this reason, a
collaboration with someone trained in writing for broadcast is necessary.

The researcher and the video professional combine to form a unique
team, blending the scientific with the aesthetic, where all the necessary
detailed steps take shape in a creative concept. This concept ultimately

becomes a video presentation at the level of quality expected by outside
industry.

267

P33y o0]

- smouy Apealje >=w=_uc___.

IR

N

268
G

19ysues) ABojouyss) Buioueyuz
:uonejuasald oapiA o} sebew s9ndwo) woid

> P

T SR L S B Rt

:... uEwEC_m.._z_mwcm u.—._w_ w:.:. H.ZQ..

lajsuel] AbBojouyosa) Buloueyuz
:uonejuasald oapiA 0} sabew) soindwo) woi

269

uonisodwo? uonouwl

.
vres

VOVY IeuEeO T
[ZX RN

X 3&”@1&:»)

R

punos,,
,10]09,,
+«NOILOW.
Aiols e |]9],
,oouaipne,,

i9ysuel] ABojouyos) Bujoueyuz
:uoljejuasald oapip o1 sabeuw Jjoyndwio)n wou4

270

** Jayjabo} yiom ya| pue ybu ay,

lajsuel] Abojouyoss] Hujoueyusm
:uoneuasald oapiA o0} sabew) soindwo)d wo.4

271

005G 3%
356125 / N95- 16468

The Role of Computers in LaRC Ré&D
Graphics and Image Processing Session /
June 16, 1994 ’ ZO

Data Visualization and Animation (DVAL) Overview

Presented by Kathy Stacy and Bill von Ofenheim

Abstract:

The Data Visualization and Animation Lab is an open shop facility
created and supported by the Scientific Applications Branch of the
Information Systems Division. The DVAL is located in Building 1268,
Room 1101A. An experienced team of visualization experts is available
to help researchers import, visualize, and interpret data derived from
a wide variety of sources including in-flight experiments, wind tunnel
tests, computer simulations, and atmospheric studies.

The general capabilities of the DVAL include digital image processing, 3-D
interactive computer graphics, data visualization and analysis, video-rate
acquisition and processing of video images, photo-realistic modeling and
animation, video reports generation, and color hardcopies. The hardware
resources of the facility cover a variety of computer platforms including
Sun workstations, SGI workstations, PCs, and Macs. The Video Image
Processing System (VIPS) is a specialized system designed for post-
processing of images recorded to videotape. The system supports the
common video formats used at the Center, including VHS, S-VHS, U-Matic,
U-Matic SP, and Betacam. The most common application of VIPS is the
processing and analysis of video images produced by wind tunnel or
in-flight flow visualization experiments. The system allows for
video~-rate (or 30 frames per second) digitization, processing, storage

and retrieval of video frames. The real-time digital disk can store

up to eight minutes of digital image data. The video-rate processing
includes frame averaging, running averages, frame-by-frame subtraction,
pseudocoloring, and spatial convolutions with a kernel size up to eight

by eight. The Scientific Visualization System (SVS) is another specialized
system for generating broadcast quality video productions. Hardware
resources also include a film scanner and flatbed scanner for image input,
and graphics hardcopy devices for image output. The software resources
incliude major commercial visualization packages such as PV~WAVE, KB-Vision,
SGI Explorer, WAVEFRONT, TECPLOT, Mathematica, and Fieldview, as well as
public domain packages and software packages developed in-house.

A sample application which utilizes most of the capabiliites of the DVAL

is the F-106B Leading-Edge Flow Visualization Experiment. The original

data from this experiment were vapor screen images recorded on black

and white VHS videotape. Select frames from the videotape were digitized

in DVAL using the VIPS system. The 2-D digital images could then be
enhanced, and vortex core locations could be located, using PV~WAVE scoftware.
A geometric mapping model was developed to accurately map 2-D vapor screen
images into 3-D space. The Flow Analysis Software Toolkit (FAST) was used

to interactively visualize the 3-D vapor screen image data along with the
numerical surface geometry of the F-106B. Computer animations were generated

using FAST, and a broadcast gquality video containing these animations was
produced on the SVS.

One component of DVAL is the Scientific Visualization System (SVS) which

272

consists of a state-of-the-art digital video editing suite for creating
broadcast-quality videos from computer-generated results. These videos
are used for analysis, presentation, and dissemination. Video helps
the analysis process by providing real-time playback of images which
may take hours to create thereby allowing researchers to get a better
understanding of their time-dependent results. Video is also a highly
portable and universal media for presenting dynamic data at conferences
and meetings. Lastly video is an effective mechanism for abetting the

technology transfer process by virtue of its inexpensive and self-
contained nature.

The philosophy behind the Scientific Visualization System is the
preservation of the original image quality.
This is accomplished by using digital component video equipment.
Digital component video is compatible with digital computers and
digital networks so image data suffers no loss during transmission.
Also editing and special effects are performed digitally so the
integrity of the original image is always maintained.

There are three phases to the video creation process: 1) Pre-Production,
2) Production, and 3) Post-Production. The pre-production phases in-
volves creating a storyboard, writing a script, narrating the script, and
adding music. Not all of these steps are required for each video but
at minimum each video should start from a storyboard. The production
phase involves creation of the images or animations using existing
packages (e.g. FAST, Wavefront, and TECPLOT) or special purpose codes
written by SVS personnel. The created images/animations are then trans-
ferred to SVS either digitally using LaRCNET or via analog means such
as SVS’s transportable laser disk recording system. Video tapes created
using a video camera such as used in wind tunnel and in-flight experiments
are another means for production. Finally, the video is
editted together in the post-production phase using editing techniques
(e.g. fade, dissolve, wipe, etc.), special effects (e.g. warps, split
screens, layering, etc.), title generation, paint, and graphics.

273

wiayusjo UoA |iigd
foris AyieHy
:Aq pajussald

M3IINHAANO (VAQ) av
NOILYIINV ® NOILVZITVNSIA V.1vd

661 ‘91 aunpe
uoissag Buissadsold abew| pue sojydern

a®y ode1 ul sisindwo) JO 3oy SuL
doysyiom 661

274

suoiljebiisaaul aaualos
a|geus pue adueyua 0} sanbiuyos] pue s|00} uoljezijensia
Adde o} siayoteasal gHe7 yum sdiysisauiied 181soj (g

oye 1e Aujiqedes
uonezijensia 21j1jualos e—-ayl—jo—ajels e ujejuiew pue apinoad (|

:sonnoalqo
asi jo yosueag suoneoijddy osynualos ayy Aq psyoddns pue pajeal)d
V10LL wooy ‘gozl Buipjing ul pajedon

Aupoey uonezijensia oyipualos doys uadQ

puno.b)oeg

MIINHFAO TvAd

275

saidoopieH 10|00 -

uonetauab spodas oapIA

uonewiuy pue Buijepop ansijeal—ojoyd

sobew) oapIA Jo Buissaosoid pue uonisinboe ajei—-0apIA

sisAjeuy pue uoljezijensip ejeq
soiydeln Japndwo) aanoeisiu] g-¢ -

Buissaodo.id abew) jeubiq -

saijljiqgede) |elaudy)

MIINHIAO TVAd

276

joouyl ‘jooiqoig ‘INNT1l Buipnjou; sabexoed asnoy-uj
abewipeo|X ‘AX ‘SOHOHM Buipnjoul sebexoed ulewoq d1qnd
Mmainpial4 ‘eonewayleyl ‘107d03L ‘LNOHAIAVM ‘4atoldx3 |DS

‘UoISIA-) ‘TJAVM~Ad Buipnjou; sabexoed |ejosawiod Jolep
:599IN0S8Y 9IeM}OS -

saoinaq AdoopieH solydesn uononpold 0} SS9y
lauueods paqiej} pue lauueds wjid

(SAS) waisAs uoneziensip dIUBIOS

(sdIN) weishs Buissasoid abew) oapiA

oBI ‘Od ‘suoneis)iom |HS ‘suoljeisjyiom ung
:$904N0S9Y aiempieH -

S92IN0S9Y

M3IAHIAO TVAd

277

lajuld
oopIA Auos

lojesauab/iapeal
apo2 awil

S.HOA

Wbiy-ul

UOI}eISHIOM UNS

sisseyd -ou|
‘saibojouyoa)l
Buibewy

|
ysia leubia
awl L -|esy
s)jdasuo)
abeiols

A
5 siojuows
oapiIA Auos

jeAal}al pue ‘ebeiols ‘Buissasoid ‘uopeznibip ajel-oapIA «

adejoapiA uo paplodal sjuswiiadxs uopezijensia Mojj
10 jauun} puim jo Buissasoud apnjou) suoyedijdde uowwo) »

adejoapia 0} papiooas sabeuws jo Buissasosd-isod 1o} paubisaq e

wo)sAg Buissao0.id abeuwl| 09pIA

278

oapIiA Ayjenb jseapeouq
uonew.ojul uonisod aijewoab aanemuenb
Aunqedes sisAjeue jensia aanoesoul g-¢ € :sjonpoid TvAQ »

adejoapiA ayym B Hyoe|q :92inos ejep jeulbuo «

anbjuyoa] uaaios iodep Huneioy
e Buisn yuswiadx3 uonezjensip moj4 abp3-buipeat g90i-d

uonedddy ajdwes

M3IINHIAO TVAQ

279

uoj}isod esawe) dog

uoiBay 3|qISIA

uaneulbliQ
1eays b

saue|d

193ys 1yb17
40 UOHBJ07

(fjuo)) uoneoiddy sjdwes

MIINHIAO TVAd

280

- sabaw|
ugalag Jadsp

Ayamoap .
23BLNS PAREYS

WY, s 2017 JUBUIYRE}0AY

JualIUOIIAUT UOREZHENSIA aAljoRIa)u]

juawa|ddng
02pIA

v dLVSYN

uoneuwassig 9 uanasygngd

sabaw)

aoueyuy

pasueyuy

aueld
LIS
b

saBuwy

enB.ag-z

Aauoan
aJeung gsol -4

aueld
abet

sldjaleied

IOWIRY
1

- - - . -

siajauieled
ISR

azibIg

03pIA 3591 b4

281

(g%
e

ING .Wm,.

kil i

-uo

O B
A AP B B S LR 'aZ 2 T dind MR 253D IR S e

@.‘L.Ti IO G U DO P Oy
TP RN) P R Y P e o M vy

sanyjiqedes Tv¥AQ Inoge uopewlojul aul|

ajep-0)-dn «

abed dlesoN TVAQ

MIINHINO TVAQ

GE 15
POOR QuUALITY

ONQINAL PA

oF

282

Jajsuet] AbBojouyosjjuoneulwdssiq -
sisAjeuy -
uoljejuasald -

: 10} s}insay

pajesauan-iaindwo) jo sade] oapiA Aljenp-iseopeolg adnpoid

aung Bunip3g ospIA leubla
1y-9y)—j0-ajelS B si (SAS) waisAs uonezijensip dliuaIOS .

[

woalsAg uonezijensip olLHIUBIOS

M3IIAHFAO TVAd

RQINAL PAGE 18

OF POOR QUALITY

283

laplooay)}sia O8PIA
lenbia sexaqv-SAS

._.mzomm._

jeubia

!

uonisinboy abew| - SAS

MIINHIAO TVAd

284

uononpoid-isod (€
uoinonpoid (¢
uononpoid-aid (1

: §S920.1d dols 994yl

uoijeald oapIA SAS

MIINHIAO TVAd

285

Aeaqin ad uoljesedald pieoqhiols

uoneseN

WY TS
£ NS p v K]
ony
ol Pty)
YT T vy ..I».'nlk»] Gergr ,v:ﬂ-w.‘-&
B o I3)
. franndgg 2} sme

UOIS|A9Y pue
Buniim 1duIos

. S . \.f‘

!.,l!lcl.-‘.!b.. .
oot B L R SO S
140 4 e O St : A3
atot:iel.(.ol‘l. ..r‘.n“..
»w.

O L PIREEE Y IS AR A
B 10w s Dm0 Sk ¢
¥

Y et
OGN T N S s 2y
————. O IMNN HUPNIR

(ORI 13t VIO WS MR o ’
B e o
TSI | e et
NS rhenn . * i
: ‘e Mo semwe on s oy
e W | iy
K by ot inna i P Inamroux

uoijonpoid-aid SAS

MIINHINO TVAd

286

SAS 01 sabeuw Jo 13jsuell »

INOH4IAVM 101403l

P e, g e
TERTSSE TP NP COT I T A Ot DT TR w._.
; mIELy

i R e

. sebew| pue suoewiuy JO UOleal]

sapo) asodind |e1oads -
siojejnwiis -

sSlaAlIg 992InaaQg -
siojejsuel] -

: fuimwesbold JeIindwio)

uo1ONPOid SAS

M3IINHIAO0 TVAd

287

uo

jeJauay) ajllL

aam) suofat

sadip\ —
sanjossia -
sapeqd -
sjny -

: bunyip3g o03pIA

uoionpoid-1sod SAS

M3IINHFAO TVAd

288

sugaios Mids

(juo)) uondNpoId-1sod SAS

M3IINHIAO TVAd

289

y100g uoneleN SwalsAs 21ISNOJY o
19p1093Yy 9asse) olpny Wedse] .
Joplooay 1va OAl

1afeld @o Auos .

13X1y oipny AUOS

soup3 oapip/oipny Auos .

1oplooay ade) SHA dieys e

1opiooay adel SHA-S OlUoSeUEd »
1apiooay ade] onew- Auos .
Japiooay adel dS onew— Auos »
(Z) 19plooay ysiq 19seT Auosg «
1afe|d odel dS weodeled AUoS
(2) 1epi0oay ade} dS weodeldd Auos .

(z) 1apiooay ade] 0apIA lenbia td Auos .
(z) 1opiooay XsiA O8PIA 1enbig se)eqy «
joup3 09pIA [enbia wnisodwo) X/44 e

1api09ay adel SHA JOAr » ;

alempJleH SAS

M3IINHIAO TVvAd

290

AOD esBU 21R| D WIBYUBJOUOA I M
[APAC) 28

uolsiAlg swalsAs uofjeunioju]
youeig suonesiddy o111uslos
wiayusjQ UOA jjid

: J0BJUOY) o

ab.ieys Jo aauj aJe
SAS Aq papiaoud jeusjew pue SadIALeS e

ade} O9pIA —
sabew pajesauab-i1aindwiod -

: woJj suopewiue HI4N Jo uoneal «

"OSIIN SAS

MIINHINO TVAD

291

25013 2 /10959 Ng5-16469

Data Visualization and Animation Lab: Applications /%:>‘*{j?
Kurt Severance, Mike Weisenborn ¥

A wide variety of software tools in DVAL have been successfully used to
visualize, analyze, and present computational and experimental data at
Langley Research Center. These tools can be roughly categorized according
to five primary uses: 2-D image analysis, conventional 3-D visualization,
volume visualization, photo-realistic rendering, or special-purpose
applications. Software in each of these categories is accessible to

LaRC personnel free of charge, and training or consultation can be
arranged with the DVAL staff.

Two-dimensional image analysis software is supported on many platforms

and provides several fundamental capabilities. The input is generally a

2-D array of bits, bytes, integers, floating-point, or even complex numbers.
These arrays can then be represented as color images from which features
can be enhanced, extracted, and statistically analyzed. Images can also

be represented as contour plots or, by correlating height with a scalar
quantity, as 3-D surfaces. Most image analysis tools in use today support
two levels of users: the programmer, who intends to incorporate their own
algorithms usually through a command-line interface, and the novice end-
user who usually prefers to work with a straightforward menu interface.

Advanced features include image segmentation and pattern recognition
capabilities.

The two primary image analysis packages available in DVAL are PV~WAVE and
KB-Vision, both of which have been successfully applied to several LaRC
projects. PV~WAVE, a product of Visual Numerics Inc. runs on most UNIX
workstations, and multiple licenses are available which can be shared among
LaRC researchers. A more advanced product, KB-Vision from Amerinex Artificial
Intelligence Inc., employs artificial intelligence techniques to provide
state-of-the-art feature extraction and pattern-recognition capabilities.
KB-Vision has been used to analyze and reduce images acquired from an in-flight
experiment which utilized tufts, and from a spin-tunnel test which utilized
retro-reflective targets.

Software which allows interactive visualization of 3-D data was originally
specialized for computational fluid dynamics solutions on high-end
workstations. Today, tools are available even on modest computing platforms
for visualizing dense data from either computational or experimental sources.
These conventional tools generally input volume grids, scalar gquantities, and
vectors in either structured or unstructured format. Arbitrary cross-sectional
surfaces through the data can be displayed and colored according to a selected
parameter. Advanced features include iso-surfaces (the 3-D extension of a
contour), transparency, thresholding, stereo display, and animation.

Three primary scientific visualization packages used at the Center include
the Flow Analysis Software Toolkit (F.A.S.T.), Tecplot, and Fieldview.
Although these tools were originally intended for CFD research, they have
been successfully used to analyze a variety of datasets including those
from wind tunnel or in-flight tests, atmospheric simulations, structural
analyses, and medical scans. F.A.S.T., a highly interactive environment
often used in DVAL to produce animations of 3-D data, is supported on
Silicon Graphics (SGI) workstations and is free to all NASA personnel

and contractors. Tecplot is free of charge to LaRC personnel and is
available on SUN, SGI, DEC, HP, IBM, and PC platforms. Fieldview, by
Intelligent Light, Inc., is supported on all major UNIX workstations, and
a limited number of licenses are available at LaRC upon request.

Volume visualization techniques offer an alternative to the more traditional
visualization tools. Whereas the conventional tools require the user to
eéxtract polygonal approximations such as cutting planes and iso-surfaces
from their data, volume visualization tools can potentially render an entire
volume of data, allowing simultaneous examination of surfaces and internal

292

structures. This technique is particularly applicable to the analysis of
diffuse or "fuzzy" 3-D phenomenon which have no clear boundaries, such as
electromagnetic fields. Current volume rendering technology requires the
volume to be a rectangular parallelepiped (a box) which is furthermore
subdivided into cubic building blocks, called voxels. A value (upto 16 bits)
for some measured or calculated property is associated with each voxel.

The usefulness of volume visualization has been demonstrated in a number

of fields including cell biology, medical imaging, nondestructive testing,
molecular modeling, astrophysics, and multi-dimensional mathematics.

A high-end volume rendering package called VoxelView by Vvital Images, Inc.
is supported on SGI and Macintosh platforms and is available for use in DVAL.

When a very high-quality computer-generated image or animation is necessary

to describe an otherwise abstract idea or phenomenon, photo-realistic rendering
software is required. The Wavefront Advanced Visualizer available in DVAL
serves this purpose by providing a menu-driven environment in which such
effects as textures, shadows, reflection, refraction, and transparency can

be simulated and applied to complex, moving objects. The objects can be
modeled within Wavefront or can be imported from other packages such as

PLOT3D or IDEAS. This software has proven useful in several areas, primarily
in the description of an experimental facilities such as wind tunnels in which
interior structures of interest are often inaccessible to conventional cameras.
Similarly, many phenomenon which are too small, too large, too abstract, or
simply non-accessible have been simulated with this rendering package.

Specific applications have included the depiction of a water tunnel experiment,
the simulation of shuttle arm flexing due to heavy payloads, the internal
structure of multi-layered I-beams, and the simulated take-off of the High
Speed Civil Transport. Two copies of the Wavefront Advanced Visualizer are
available on DVAL S5GI workstations (with 4-CPUs each), and staff is available
to produce requested animations or train interested individuals.

A special-purpose application program has been designed in DVAL to support
flow visualization experiments which utilize cameras and lightsheets.

The software, termed ILLUME (Interactive Lightsheet Locator Utility and
Modeling Environment), provides an interactive capability for determining
suitable placement of cameras and lightsheets well in advance of the actual
experiment and before any instrumentation is configured in a tunnel or on
an aircraft. The software allows the user to position cameras and light
sheets with respect to the test object or model and see simulated camera
views. Adjustments can be made to the camera and light sheet positions

and orientations until the desired view is obtained. In addition, roll,
pitch, and yaw adjustments can be made to the model to determine whether all
desired regions of the model remain visible to the recording camera for a
range of test conditions. ILLUME is an OSF/Motif-based program which runs
on most SGI workstations, accepts PLOT3D grid and function files, and is
freely availabe to LaRC researchers.

Information about all of the packages mentioned can be obtained through the
folliowing e-mail addresses:

PV~WAVE pvwave-request@hojo.larc.nasa.gov
KB-Vision isdcs+iphelp@larc.nasa.gov
Tecplot tecplot@eagle.larc.nasa.gov
Fieldview j.t.bowen@larc.nasa.gov

F.A.S.T. isdcs+vizhelp@larc.nasa.gov
VoxelView isdcs+vizhelp@larc.nasa.gov
Wavefront isdcs+vizhelp@larc.nasa.gov
ILLUME isdcs+vizhelp@larc.nasa.gov

293

uloquasiap\ NN
90URIONADS LN
:Aq pajuasaid

SNOILYOITddY (AvAQ) gav
NOLLYININY ® NOILVZITVNSIA V1Va .

294

v661 ‘9L sunp
uoissag Buissanoid abeuw pue soiydesn

ae4d Hye1 ul sseindwo) JO 910y a3yl
doys)ioMm 1661

aiem}jos uolezijensip asodind-jeloads
alem)pos Buliepuay ansijeal-oioyd
9lBM]jJOS uoOjjezIjensi) aWn|oA

91eM}JOS UONBZI|BNSIA J1j1JUdI0S piepuels

alemyjos sisAjeuy abew

aulIno

SNOILYOI'lddV IVAd

295

suolelsyiom XINNM 1soul «

uoijiubooal usayed pue UOOBIIXD BiNJED) 10} POHNS—||OM « S p—
sanbjuyoe) *|'y 1e-ayj—jo-ajels sAojdwo « il

-ouj ‘@ouabij|eu] [BIo1J1IY XBULIDWY o

aie] @ djaydi+sopsi UoISIAEMN

suolje}sHiom XiNMN Isoul « I
sanljqeded sisAjeue Q—¢ 8WOS ¢ | gpy. .

abenbue] aulj-puewIloD «

*0uj ‘SOIBWINN [BNSIA o

ofloymisanbai-anemad JAVM~Ad

|ana] 4J9sn—-pua Jo Jawwesboud .
sjo]d aoe)Ins pue ‘ANoOjuod ‘aul| «
SOIIS1IB]S pUE ‘uoloelIXa ainjea) ‘uawasueyus ‘Aejdsip abew 10]02 «

ejep Juiod-6uieo); 1o ‘1abajul ‘@3Aq ‘Uq jo sAetie sindul «

2Jem}os sisAjeuy abeuwj

SNOILYOI'lddY TVAd

296

T

a|dwex3 sisAjeuy abeuw

SNOILYOI'lddV TVAd

297

DVAL APPLICATIONS

Feature Extraction Example

Tuft Images

™

*

1S10Nn

KBV

©

£
fe) L]
= £
O—

298

Segmentation Line
of Image Approximation

Zoomed Image
Section

w UOISTAHM

aweu} oapIA ajbuls

D DO s,

sabeuw| |jauun] uids
:9|dwiex3 uoijoea}xg ainjea

SNOILYOI'lddV TvAd

299

saoeJ) a|oiied «

Spjol} 10}08A

S90BJINS—0S| o

sannuenb iejeas 0} Buipioose sadeINs palojod 0 PAINOJUOI «
ejep 8y} ybnouy} saoeLns |euoijods—ssoid Aeinqie «
JUSWIUOAIAUD dAnoeIaul Ajybiy «

:spl16 painionaisun 1o painionils g-¢ »

:S31L1119VdVvO TVvHINID

ejep jeuoneindwoo Jo jejuswiadxa Aue Ajjeonoead buizAjeue
ul [nyasn pue swJiojield jo AlaLiea e uo a|gejieAe mou .

suole}syiom pazijeioads Uo sy)nsal
a4o azAjeue o} paubisap Ajjeulblio aiem}os wolj PAA|OAD «

:AHO1SIH

a2iem}jos uoljezijensip
J11UdI0S plepuels

SNOILYOIlddV 1TVAd

300

1sanbai uodn gye 1e ajqe|ieAe «

Od ‘gl ‘dH ‘03a ‘19S ‘NNS »
-ouj ‘Bunisauibuz oWy .

a|bea ®io|doa) jojdoa]

a|qejleAR SaSUdII| JO Jaquinu pajwi| e
suoiles)iom XINN Jolew jje o
"au] ‘Wyb17 JuabijIsu] -
asiejuamoq-y| M3IAp]BIS

VSVN 01934}
suoleIsyiom |Hs Ajuo .
aJem}jos Bullsls / 18Jud) yoieasay sawy .
aie) @ djayzin+sopsli (L'S°v'd) ivjoo] aiemyos sisAjeuy mo|d

:S3OVMIOVd A3ISN-AT3AIM

a1eM}JOS uoijezijensiA
O1}1JU3IDS pJepuels

SNOILYOI'lddV TVAd

301

s|o4juo) BuimaiIn

aqoid a-¢
sabeuwj
[suuny puim
paiojon—-opnasd
aoell
ajolied

SaoeuNS
jeuoneindwo)
painojuo)

"5]01JU0D) 80BLNG

1)00 | dJiempjos sisAjeuy moj4
SNOILYOI'lddV TVAd

OF POOR QuALITY

ORINAL PAGE &

302

ejeq susydsouny

——m—— —————— e SR A S

ejeq [eopeaN ejeq b4

suoneolddy JaylQ

SNOILYOI'lddV TVAd

303

‘ou] ‘sabeuw) [ellA AQ ‘MBIAISXOA TTYAQ NI 319V TIVAV
Aouasedsues) Buisn paulwexs Ajisea sainjonlls |euidjul «

Ajojeinooe pajuasaidal aq 0}
(spjeyy ABiaus “o°1) sallepunod Jeajd Jnoyum euswouayd smojje .

uonewixoidde jeuobAjod e ajeald 0} Alessaodauun «

:SINDINHOAL (TYNOHAT0d) TVNOILNIANOD HIAO SIADVINVAAY
elep g-¢ Jo suonnquisip asnyip 10 ,Azznj, 10} paliNs—|jom «
sagqno paoseds-Ajieinbal ojul papiAIpgns aq 0} dwn|oA 8y} salinbai .

BlEp IB|BIS JO BWN|OA 341]Ud ue azijensia o} sajydeib
Jepndwod pue Buissasoud abew Jo sydeouod ayy sauiquiod «

-S3dN1v3d

91eM]JOS uonezijensip aWnjOA

SNOILYOI'lddV TVAd

304

DVAL APPLICATIONS

Examples

VoxelView

7]
c
Qo
=
O
Q
n
%)
7,
Q
T
&

305

M.R.I. Data

Molecular Data

uoniuyaqg uonopn Bunip3 jeualepn Butjepon 103lqo

saouanbag uonewiuy pue sabeuwy ||1S 10} Pas «

uonewiuy Jandwo) olisijealoloyd e

19Z1|ensI\ paoueBApPY JUOIJOABAN

SNOILLYODI'lddV TVAd

306

sp11b ojuo Buiddew uonouny smojy

Anoawoab 10} sajiyplib qelold sosn «

meA pue ‘youd ‘j1o4 ‘uonejsuely [9pPOo «

sjeaysiybryigordn «

(Bunpejsuedy 1o Bunejou) adAy pue ‘uoljeiuaiio ‘uonisod 1aysiybi .

selawen golrdn

uoljejuaLio pue uonisod elawe) «

‘Sjouod JINNTTI

SNOILYOI'lddV 1VvAd

313

elawed ybnoayy
MB3IA 3leIndoe SMOYS

:M3IA BIOWR) o

314

jusawiiadxa Jo
dnjas |je1dA0 SMOYS

:MOIA [BCOID o

SMIIA JINNTTI

SNOILYOI'lddV TvAd

1ioddns pue bujuies) TvYAQd »
S19Y21easal Hye] 01 a|qejiene Ajgai «
saulyoew JyAQ Uo 39|qejleAy .

suonelsyiom saiydels UoljIS }ISOW UOo suny «

Auligejieny 3NN

SNOILYOI'lddY TVAQ

315

8.1
8.2
8.3
8.4

8.5

8.6

SESSION 8 System Design and Integration
Chaired by

Jerry H. Tucker

The Design Manager's Aid for Intelligent Decomposition DeMAID - Jim Rogers
RDD-100 and the Systems Engineering Process - Robert Averill
Computer Tools for Systems Engineering at LaRC - J. Milam Walters

A Distributed Computing Environment for Multidisciplinary Design FIDO - Robert
Weston

An Overview of the Computer Aided Engineering and Design for Electronics
Laboratory CAEDE - Shelley Stover

The Software Engineering and/or Ada Lab (SEAL) - Robert Kudlinski

316

‘dnjas AjLie|o 0} sainjea) uieuad
9AjOSSIp ued uonjewue 1INdwio) .

-dnjas jeluswiiadxe ay) ajesjsuowdp
Ajn} 10u ued sydesboloyd .

dNi3S TINNNL 3LV

ABojouyosa] ailning ajeinwis AjjensiA «

s103/qO }JO 2.N19N4}1S JeuldiuU] MOYS

BUaWOUAYd djqeAalasqoun ajelisuowa(«
dnjas jejuswiniadxy Aejdsiq ¢ -

suopeoljddy aynusiods

SNOILYOI'lddY TVAd

307

"X3}} J0
uonesjsuowsp pue uonesabbexa
pamojje uonewjue Jayndwo)

‘wiie Ul Xajj jo4puod o} spoyisul
Bunebisanul a1om si1aydieasay e

TOHLNOD WHV 31LLNHS

308

ABojouyoa] ainin4 ajeinwis AjjensiA e
$193lqO JO 8i1N}oNNS [BUIBIU] MOYS «

BUSWOU3Yd d|qeAlasqouf ajellsuowiaq « =
dneg |ejuswiiadx3g Aejdsiq »

suoljeoljddy o1}11uaids

SNOILYOI'lddY TVAd

*2iN}oNJ1s |euJalu| Jo uojesisuowap
pamojje uonewiue 1a3ndwo? «

‘sl1ofe] sajdnnjnw
YUIM P3JONIISUOD d1oM SWeaq-| «

FHNLONYLS NV3g-I

ABojouydsaj aining argjnuiis AjlensiA «
§193(q0 JO 34N10NUIS [BUIBU} MOYS
BUBWIOUBY 9]0BAIdSQOUN 3lBIISUOW(] o
dnmag jeluswinadxy Aejdsiq »

suolnedlddy aynualog

SNOILYOI'lddY 1VAQ

309

‘yetodie ay jo maia Aeujwijaid
e papiaoid uonewiue 19indwio) «

-aseyd ubisap ul ||11S S| Jelsolly

1LHOdSNVYH.L THAID d33dS HOIH

ABojouyosa] aining ajejnwis AJjensiA ¢ -
s109lqO JO 9.n1oNAIS [eUIDIU] MOYS
rUBdWOU3Yd d|qeAalasqoun ajesisuowa e
dnjas jeluswnadxy Aeidsiqg »

suonedljddy o11jualdsg

SNOILYOI'lddV TVvAd

310

Juoljanepp Buisn ul asipiadxa yum jeis TvAd e«
Juotjanepn Buiuiesi 10j ajgejiene Si 30UB]ISISSY «
suonelsyIop salydein uodi|is Ndd— uo buiuuny

19Z1|ensi) pasueApy ayy Jo saidodo om] «

TVYAQ Ul JUOMSABM

SNOILYOITddV TVAd

311

(41LOWN) @2eiv1u] Jasn jeawydels «

312

asiadxa |e20] - JYAQ ul padojanaq »

"s}aaysiybi| pue
selawed Buinjoaul syuswiiadxa jo dnjes asea o} paubisa(e

juawuodiaug Buispo pue Ainn 101e007 198ysiybi aanoeIau] «

JNNT11

SNOILYOI'lddV TVAd

356739 /10055 N95- 16470

The Design Manager's Aid for Intelligent
Decomposition
DeMAID F 3/

James L. Rogers
Ext. 42810

Many engineering systems are large and multi-disciplinary. Before
the design of new complex systems such as large space platforms
can begin, the possible interactions among subsystems and their
parts must be determined. Once this is completed the proposed
system can be decomposed to identify its hierarchical structure.
DeMAID (A Design Manager's Aid for Intelligent Decomposition) is a
knowledge-based system for ordering the sequence of modules and
identifying a possible multilevel structure for the design problem.
DeMAID displays the modules in an N x N matrix format (called a
design structure matrix) where a module is any process that requires
input an generates an output. (Modules which generate an output
but do not require an input, such as an initialization process, are also
acceptable.) Although DeMAID requires an investment of time to
generate and refine the list of modules for input, it could save a
considerable amount of money and time in the total design process,
particularly in new design problems where the ordering of the
modules has not been defined.

The decomposition of a complex design system into subsystems
requires the judgment of the design manager. DeMAID reorders and
groups the modules based on the interactions among the modules,
helping the design manager make decomposition decisions early in
the design cycle. These interactions can be deleted interactively.
The modules are grouped into circuits (the subsystems) and
displayed in a design structure matrix format. Feedbacks, which
indicate an iterative process, are minimized and only occur within a
subsystem. Since there are no feedback links among the circuits, the
circuits can be displayed in a multilevel format. Thus, a large
amount of information is reduced to one or two displays which are
stored for later retrieval and modification. The design manager and
leaders of the design teams then have a visual display of the design
problem and the intricate interactions among the different modules.

317

The design manager could save a substantial amount of time if
circuits on the same level of the multilevel structure are executed in
parallel. DeMAID estimates the time savings based on the number of
available processors. In addition to decomposing the system into
subsystems, DeMAID examines the dependencies of a problem with
design and behavior variables and creates a dependency matrix.
This matrix shows the relationship among the independent design
variables and the dependent constraint and objective functions.
DeMAID is based on knowledge base techniques to provide flexibility
and ease in adding new capabilities. Although DeMAID was
originally written for design problems, it has proven to be very
general in solving any problem which contains modules (processes)
which take an input and generate an output.

The user begins the design of a system by determining the level of
modules which need to be ordered. The level is the "granularity" of
the problem. The design manager may wish to examine disciplines
(a coarse model), analysis programs, or the data level (a fine model).
Once the system is divided into these modules, the user determines
each module's input and output, creating a data file for the main
program. DeMAID is executed through a system of menus. The user
has the choice to plan, schedule, display the design structure matrix,
display the multilevel organization, examine parallelism, examine the
dependency matrix, or trace the effects of a change in the design
process. The main program calls a subroutine which reads a rule file
and a data file, asserts facts into the knowledge base, and executes
the CLIPS inference engine. All DeMAID code is in C for portability.

There are several new capabilities planned for DeMAID. Currently,
interactions either exist or not with no quantification as to their
strength. Sensitivity analysis is to be used to determine whether or
not the interface between two modules is strong or weak. Weak
interfaces may be deleted or suspended, thereby reducing iteration
times. A second capability will allow the user to breakdown the
output of a module into several important pieces so individual pieces
can be traced as opposed to the entire output. Currently, DeMAID
orders modules within a circuit based on minimizing the number of
feedbacks. Since several different orderings may produce the same
number of feedbacks, a genetic algorithm is being considered to find
the optimal ordering based on a user-defined cost function. Finally, a
graphical user interface is being added to make DeMAID more user-
friendly.

318

v661 ‘9L-GL aunp
a=zyd Dye ui siaindwo) Jo 3|0y ayl
uo doys)iop\ 9yl je pajuasaid

si19boy 1 sewep

(aivineq)

NOILISOdINOD3A LNIDITIALNI HO4
dlv S HIODVNVIN NOISFd FHL

319

Atrewwng

sallljiqeded maN
s}jo-ape.} ubisag
saljjigeded JualLing
diVINRQ JO MBIAIBAQO
Xi1ew ainjonuys ubiseg

wdjqoid ayl

ANITLNO

320

suoisioap ubisap Ajies bunjew
ui Jobeuew ubisap ayj} pie 0} sjqejieAe sjoo} majy A1op

swiea} ubisap ay} Buowe yiom ubisap ayj buipiaig (g)

}oeqpoa9y
aziwiuiw 0} sajnpow 3y} jo asuanbas ayj buliap.ioay (2)

sajnpouwl ejep pue jeuoljeindwod
ay} Buowe suoijoeiaul ayl buiuiwaaleq (1)

:salinbal

yeJtodie paads ybiy e jo ubisap jenydaduod ayj se yons
walsAs Ateundiosipnjnu ‘xajdwod pue mau e bujubisag

N3T7904dHd dH1L

321

«Painjoejnuew ag ued }i uesw },usaop apew aq ued bBulyjpwos asnesaq isnp,,
»-Jede |18} il pue) paddoip am og ‘}sa) doup

e ssed 0} pey) sn pjo} buiddiys uayy sy deus jje yum 31 paubisapai am

0S °"SMIIS djkUlWi|d 0} 1aM am jey) sialienbpeay wouy umop awed pIoM..

LS Usiul 19nd Ay} op MOH "salas ul jje way) subisap
(19yew oine sn) ajiym asuo je Ajquiasse ue jo sued ayj jo jje subisap uessiN,,

. "9AI1E3ID S|)l INQ 191jU09 jo JOo| e S| diay]
'swajgqoid yum siajunod Buunjoeynuely “subisap sasodoad Buiisauibug,

.’Bunnjoejnuew ul salwwINp asoy} s,}j "wajqoad e aaey J,uop ap,,

. -9ldoad Buunjoejnuew yum Bunenobau uaym abejueape Jiejun ue way)
saAlb siyl "sjoo} s81ndwod Aouey ayj |je aaey siaubisap jonpoud mou Jybiy,,

.-buinbie wood e uj ajdoad gg| si ubisaq,

AINLIHM "3 T14INVAd "dd A9
SS3004dd NOIS3A FH1 ONINDIS3d
NOYH4 S310N0

322

[] ejed
eleqg uriolad feniuj
et UOISSIN) 9sInaYy

(~ 4 sisAjeuy
saijlend ‘Wioidd [« elldau]
Aungers) > 9I9IYaA B Emho>>
A (18joeley)) abiom] e]
sisAjeuy e 19N4S leniu)
: 0J3Y | |
jojuo) \ + . ; | _ +
m_%_m.ﬂ_% < 3po | | sisAleuy I9poN dojanag
o4ay | Pnas | "Joni1s "1ona1s Anjawoayn
19)0elRYD |\ \ [491081RYD] | 109159a)
wuo»_ <«—| [epoy B 01V [« o -sso1g
oweula | | Amams)|\ | xeld | |]
[19joeiey))
9.2_‘5 <] SisAleuy [9POW
r —U_m_mu—) oi9y olay

SISATYNY 40 LHVHD SSID0Hd

323

.“SoAljeulajje buizAjeue

10} Jaomawey} e sapinoid Ajaisw) ‘ssaooid ay) 18)je 0} Moy moys

Ajjenjoe jou s90p |00} SIY} ‘I9AMOH ‘pPamo|je aq 0} aie s)aeqpad} yaiym
Buipiebal snsuasuod yoeal pue salliAlloe snolea J1ay) Buowe sdiysuonejal
ay} azijensiA 0} sdnoib smojje yaiym |00} e S| xijew ainjondjs ubisap ayy,

“19buoj
1]

UIAD U} 9ABY PINOM YdIym UOIIEIS]I Joje| Sajeullliije uoneiall Jaijiea buippe
Uuaym Ajuo awi} ubjsap jjeiano Bulonpal uj spasdsans buuvauibua Jualinouo),

LSNP @low Ajgelapisuod
qol jjesano ay sayew yaiym 6ujjdnoa ysej-1ajul Jo Junowe snopuawiall e
sppe }I 1ayjed :ssaooad ubisap ayy Apjdwis jou saop Bupsauibus Jualinouo),

d39YNIdd3 "d NJASLS A8
«ONIHIINIONS
LINIHHNONOD ONIOVNVIA
Ol SFHOVYOHddV adasva-1ddO.
INOHd S310ND

324

—@
—@ ejed [7]
e @ weiboud]
®
w w té
®
: JYH;
¢ ®
0 S U=
(@d343a4ONN)

XIHLVIN 3dN1ONd1S NOIS3d

325

Noeqpao-

wieaJjsumop
paj indinQ

wealysdn
paj IndinQ

plemio}pasy

XIHLVIN 3HNLONYLS NOIS3d
NI 3TNAON

326

$10eqpas) 01

'S

|‘

@

‘

é
¢
o

b

oo

(d343a4ONN)

XIHLVIN 3HNLONYHLS NOIS3d

327

HN2AID

iIndinQ

1IND4HID
XIH1VIN 3HNL1ONYLS NOISId

328

(g)) eseg mm_um_;o:v_ / auibu3z aoualaju] Sdi1d

abueyn Xi11eiN
odkld] F_QQ@Q

(uoiisodwoosaq jJuabijaiu] 1o} piy s,1ebeuepy ubisaq)

diviNed 40 NvdOVvid

aoed)u|
solydetn

Aeidsiq
AN

EEmoE :_m.s_

329

IM 4V ad DS HIN N dd3d v€ ¢ dSV | 9npoul
:indui ajdwes

(umouxun) }n - snjels
2 -adAL
sajnuiw g - sawil
1yb1om ‘saaloj slweulpoiae ‘suoniuijap dejy
‘Aljawoab asepins ‘sjuawadinbal uoissi - Induj
(weuboud 181ndwod e) dSy - ssad0.id
9JUBWLIONLIAd - IndinQ
:a|dwiex3

330

(uinduj ¢ - - - ‘zinduj ‘Linduj) ssaosoid = 1ndinQ

divineda d04 3TNAdOIN V ONINIJEQ

sjuawalinbai 1ndul
Ajsnes o} i1si| jeuibiio ul jou sajnpow ppy

(sjnpow 1ayjoue Aq
indui se paJdinbaui jou Indino yum sajnpow)
uoinjos ayj o1 bunqiipuod jou sajnpowl dAoway

NOILONNH DNINNV1d

331

Aejdsip 10} jewio)
Xijew ainjoniis ubisap ojul sajnpow ade|d

S1IN2.419 ojul sdjnpow dnoJiy
s)yoeqpas} aziwiul

sjuawaliinbai indino 7/ indul uo paseq sajnpouw 18pIO

NOILONN4 ONITNA3HOS

332

?&
UNAID mx%_w_n:%w_% m
4
uNaIIo
H $
o—o ¢
(a3g3ayo)

XIHLVIN 3HNLONHLS NOIS3d

333

uoljezijajjesed yum SHNAIID }JO
Aejdsiq [ea1yoselaiy xijey 84njonis ubiseQ

R

NOILISOdINOD3Ad N3T190dd

334

X X X X i
X X X X 9l
X X X X X ¢l
X X X 6
X X X X 8
X X X X L

GL v € L O 9§ Vv € ¢

sajqeriep ubisa(

XIHLVIN AODNIAdN3d3d

a|npo

OO0 C PV B S O

335

pajnoaxa-aJ aq }snw walsAs
ayj ul sa|npouw 3y} |je jey} ueauw Jou saop siy}

‘ssaoo.d ubisap ayj} ul
ejep awos 0} apew s| abueyd e asnedaq isnp

SIONVHI NOISIA DNIIVIN

336

6¢
8¢
le

9¢
G¢

F ve
dlm”N

.9

(44

unoxg

¥4

XIH1LVIN 3HNLONYLS NDIS3A

337

62 d|npow - saAInd aejod onsed
a|gelieA ay} uo aAey ||Im siyj 103449 8y}
auiw.a}op 0} pajndaxa-al ag }snw sa|npowt jJeym

(eyep 1ndui) g ajnpouw - yb1om ssoib
ajqelieA ay} ui apew si abueyd y

3AQVIN S IDONVHI V

338

ainoaxa jou op i

XIHLVIN 3HNLONYHLS NOIS3A
a3idiaon

339

saAInd Jejod anseld - (62) HvY10d

Beip anem - (82) IAVMY
Beip paonpul - (22) SIADNIM
suojjew.lojap anseld yum Aijowoab jesosie - (s2) ecaonNam

suoljew.iojap o} anp ainssaid - (g2) H3gnvyo - - - dooj - - -
suojjew.ojep Buim - (1) 4Sdv13a - - - dooj - - -

uonnqiisip peoj - (02) WIYL - - - dooj - - -
uopnqusip ainssauid - (61) SOdH3dNS - - - dooj - - -
1yBram pajesjuaouod pue ybram jany - (1) LHOIIML

:unJaJl aq }shw sajnpow buimojjoj ayL

NOILNO3AX3-34H HO4
S3TNAOIN DNILOATAS

340

S19A0SS019 Ou SI9A0SS04D YlIM
s)deqpea) 9 s)Jeqpas] €

diviN3d HL1IM
S440-3AaVv4d.l NOIS3d ONININVX

341

sanjeA 1ndino jo umopyeaig
1N2419 B UIlylim sajnpouw jo Buiiapao ayj aziwndo

sBuidnos ,Huouys, pue eam, auiuudla(d

SALLITIGVdVYO M3N

342

}l 0] pajdnod sajnopw asoy} pue ajnpow e
uaamjaq diysuoijejas auiwLidlap o} sajni dojansq

Aoeinooe wid)sAs bBuidijiioes Jnoyum
(Buidnoo 1o ssaosoud anowsau) sbuidnod asayy puadsnsg

(ojeyyng ANNS wneqgaolg) sisAjeue AlAnisuas
ybnouyi sbuijdnod jo yjbuails aujwidlaQg

SHOYNITdNOI 40 HLON3HLS

343

G¢ - GSINPON 0C - ¥ SINPON
GL-E€9INPON OF-C3NPON G - | dINPOIN

sbuiwi

¢ uondo g uondo L uondo

11NJHID V NIHLIM
DNIH3AHO FH1 3ZINILdO

344

S1Ua121}4909 Jyblam
pauljep-iasn ale s,0 aldym

uoiouny AlIAllIsSUssS |, $9
+ uonouny bulwin , €2
+ SJOAOSSO0ID # , 2O
+ S)oBeqpod} # , L9 = uonounj 1so)

1INDHID V NIHLIM
DNIH3IAYHO0 3H1 3ZINILdO

345

S19A0SS0.19 sey g uondo

cez=guondo gggz=zguondo ge€=| uondQ

awil} |ejo] syl pulj o} wng

a|npow ay} JO auwil} UoIINIBXD
ay) Aq seosueiseadde jo saquinu Aidniny

uoljelda} ue ul
sieadde ajnpow e saw} Jo Jaquinu JUno)

NOILONNA DNINIL

346

¢ uondo

Z = (0+0) - (1+1) =z uondo
0 = (0+1) - (0+1) = L uondo

] OlZpue goli L uondo
(0) sbuidnoa jeap o

LOlgpuegol|
(1) sbuijdnos buosis @

yoeqpeaj 1o} siaquinu ay} Joenqns

pJemio}pas) 1o} siaquinu ay} ppy

(abuei Jopim e aq ||Im aiay} Ajjenjoe)
0 = Buijdnoo yeam pue | = Bujjdnoos Buoals

NOILONNA ALIAILLISNES

347

saweu jndino
|eJOAaS 9oualajal 0} aweu 9|buls smojje yoeoidde maN

a|npouw e jo indino ay) juasaidal
0} aweu 3|buls e Ajuo sesn yoeoudde juairin)

1NdL1NO 40 NMOAMVv3dd

348

pijw oW g epw

:s3nd1no 1noj sjuasaidal JnoLw

N0 LW aweu jndino sey Lw ajpnpowl _

Zw

—

COREH

3 1dINVX4

349

ubisap ul Yyoieasal 10} Seale |BI9AdS

uoljewojul bujdnoo alow pue
Huiouanbas wnuwiido aiow apnjoul 0} sanljiqeded maN

(ysata1ul peaidsapim)

[IaMy20Y pue ‘D43 ‘YHOM "14 pasayyd07 ‘03a

‘sejbno(|jouuo@d ‘doiylioN ‘0113093 |esauadn ‘Bulsog
‘ojleyng ANNS ‘LIN ‘Y291 eibioay je ajqejieae si AlVINad

wajqo.d
ubisap xajdwoo e Huipuejsiapun ui 18beuew ubisap ay)
pie o] padojanap |00} paseq-abpajmou) e si dlviNaed

AHVINNNS

350

356139 00 56 N95- 16471

RDD-100 and the Systems Engineering Process

P24

Robert D. Averill, Systems Engineering Office, AMSD, 10G

Efforts to implement an effective systems approach to NASA programs are in progress
Agency-wide 1. At Langley we are trying to define an enhanced systems engineering process
for in-house flight projects to assure that each system will achieve its goals with quality
performance and within planned budgets and schedules. An effective systems engineering
approach applied throughout the project life cycle can help Langley produce a better product.
This paper will show how this can be done by utilizing a systems engineering process in
combination with available software tools such as RDD-100 2. To accomplish this, I will,
first, briefly discuss the systems engineering process and then show how RDD-100 has been
applied as a pilot effort in the early phases of the SABER 3 instrument development.

(Chart 2) The objective is to show you how RDD-100 can be used as a systems engineering
tool throughout the project life cycle and to challenge you to consider using this tool with
your project team.

(Chart 3) Systems engineering may mean many different things to different people but this is
the way it is defined in the Langley Systems Engineering Handbook 4 which is currently
pending publication. The systems engineering process is really the key to how we approach
the problem. There are many different procedures, methodologies, and models being used for
systems engineering. It is important that each project define how systems engineering will be
managed and conducted throughout the project life cycle.

(Chart 4) The Systems Analysis and Design Procedure is proposed for use at Langley during
the Formulation Phases of the project when the systems engineering activity is the most
intensive. This procedure provides a focused and structured systems engineering method and
is a problem solving approach which can be tailored to project needs.

(Chart 5) The Systems Analysis and Design Procedure is a ten step process applied
iteratively during each phase of the project. The concentric circles represent each phase; for
example, the inner circle symbolizes the Pre-Phase A effort which has the purpose of quickly
assessing the feasibility of a proposed project to determine if it justifies further development.
The detailed activities of each step of the process are developed in more detail in LHB 7122.1.
However, they can be quickly summarized as follows. The Initialization step includes a
management decision to initiate the study and provide skills and resources necessary to do the
job on a timely basis. The determination of User Needs and Goals is perhaps the most
important step in scoping the effort; this leads directly to a definition of Systems Requirements
to achieve the goals. Performance Measures are defined to provide a quantitative standard to
assess system performance. Next, potential System Concepts are generated, Analyzed, and
Ranked to determine system feasibility. Further Systems Development may be needed to
bring the proposed system approaches to the level of maturity desired for this initial stage of
development. The final step in the process provides for technical and management reviews to
assess the status of the development. This represents a Decision Point which will determine if

351

the system will repeat the iterative development process or pass to the next phase of project
development. It is believed that the use of such a customized systems engineering process
with well defined tasks, products, and controls will help the Project Team perform most
effectively. It should be emphasized that the systems engineering process is a team effort and
is dependent upon project teamwork and communication throughout the process.

(Chart 6) The goal of the process is to enhance communication between different technical
disciplines on the project. For example, the relationship between systems engineering and
software engineering is vital to the success of the project. These two groups must work
closely together to define their mutual information needs. Are the typical systems engineering
"products" in the left column useful to the software engineering function? Are the typical
software engineering "products” in the right column a logical and related extension of the
systems engineering requirements? The project can operate most efficiently if a common
technical language is used by all of the project team.

(Chart 7) There are currently available several computer aided systems engineering tools
which propose to provide a common technical language for use throughout the project life
cycle. One of these is the Object Modeling Technique developed by General Electric 5 and
currently being marketed as StP/OMT ¢ . This tool is being evaluated for use at Langley but
is not currently implemented. The RDD-100 tool is being used in the Systems Engineering
OfTice at Langley. RDD-100 utilizes an object oriented methodology with a symbolic
language designed to be useful to all technical disciplines.

(Chart 8) RDD-100 is an extension of the earlier Entity-Relationship Model (developed
originally for information modeling use 7) into an object modeling concept. The power of the
RDD-100 concept is that the Elements (Entities) are linked by binary relationships such that
changes to any element are transferred to its related Elements; thus continuously updating the
database. The tool also provides for requirements tracking throughout the system life cycle.
Another powerful feature of RDD-100 is its modeling capability.

(Chart 9) The Integrated System Model is an evolutionary development which begins with
the most rudimentary concept of system objects and progressively evolves into a complete
model representing overall system dynamic performance. This provides continuity through
the project life cycle and offers a "seamless" transition from phase-to-phase.

(Chart 10) We will now present a brief overview of RDD-100 capabilities.

(Chart 11) RDD-100 is a menu driven application and provides ready access to all of its
features. It can be seen that the emphasis of the program is on system Elements. The Multi-
Element View and the various Editors permit easy manipulation and editing of the system
Elements.

(Chart 12) An example of the Multi-Element View concept is the SABER Requirements

hierarchy. The Element-Relationship aspect is shown as, for example, Operational Objective:
Interface Constraints incorporates Operational Objective: Instrument Mass.

352

(Chart 13) Shown here is a section of the requirements Custom Hierarchy which provides a
visual display of the relationships between requirements.

(Chart 14) The modeling capability of RDD-100 is implemented by Behavioral Diagrams
which incorporate all of the system functional and dynamic relationships on one diagram. This
is a major advantage over other concepts which separate, for example, control and data
functions on two unsynchronized models. The RDD-100 approach provides one self-
contained Integrated System Model which demonstrates system dynamic response.

(Chart 15) This is the overall SABER Operational Model based on the five key objects
selected for the system: User, Ground Station, Spacecraft, SABER Instrument, and
Atmospheric Scene. The purpose of this Operational Model is to demonstrate the flow of top
level control and data messages.

(Chart 16) The SABER instrument is shown here in more detail with the operational
functions of current interest. The behavioral diagram includes Time Functions, Time Items,
and, in this case, an Iterate Function, represented by the loop, which repeats the scan
sequence for a specified number of cycles.

(Chart 17) The scenario shown is a running model and can be evaluated by the Dynamic
Verification Facility. The system runs on an arbitrary time base which can represent any
desired time scale. Various functions can be selected to display an Events Transcript, Time
Lines, and System Resources. The Facility identifies any dynamic inconsistencies in the
model.

(Charts 18 & 19) Shown are sections of the Event Transcript showing the beginning and end
of the run.

(Charts 20 and 21) Shown are the Function Time Line and a history of the Scene Radiance
resource. The instrument, in this example, accumulates ten data samples and then transmits
them to the spacecraft.

(Charts 22 &23) The Summary concludes that the use of a structured systems engineering
process in conjunction with a powerful computer aided systems engineering tool is believed to
provide the most effective approach to achieving project success at LaRC.

NASA Systems Engincering Handbook, Draft, September 1992, JPL.

RDD-100 - Requirements Driven Development, Ascent Logic Corporation.

Sounding of the Atmosphere using Broad band Emission Radiometry.

LHB 7122.1, Systems Engincering Handbook for In-House Space Flight Projects.

Rumbaugh, Jamcs; ct al: Object Oriented Modcling and Design. Prentice Hall, 1991.

StP/OMT - Software through Picturcs/ Object Modeling Technique, Martin Marictta Advanced
Concepts Center and Interactive Development Environments.

7 Sage, Andrew P, and Palmer, James D.: Software Systems Engincering. John Wiley and Sons, 1990.

W &N -

=)

353

juswdopaaaq uaau(g sjudwalinbay
001 -dad

[[HRAY " Hq0Y

661 91 Sunf

354

Az DYeT ut srendwo)) Jo [0y YL

§5920.1] SULIUISU} SWI)SAS

oy} pue 01-add

jawdo[aaaq uaan(syudwarnbay
001 - Ay

*3[0A0 911 109f01d ay31 Inoy3nouy
[00 L, SurosuiSuy swaisAQ e se pasn oq ued O01-AdY MOH -

HALLOHIIO

355

juawdojaaa uaan(g sjudwalinbayy
001 -Aaqay

(I'ZCIL 9HD M00oqpueH
SuioouiSuy swaisAg A9[Sue oyl ur paulgap SI pue 9A103(qo
siy1 9Aa1yoe 01 yoroidde oy st ss9004d FuLIddUIZUD SWIISAS Y],

*3[NPAYOS pue 10D JO SIUTRIISUOD Y} UTYIIM SIANI3[qO
douruLIojrad [eOIUYD9) S I9W0ISND Y] SAJSHBS YOIYM WAISAS
1snqoi e ap1aoid 03 st FurIddUIZUd SWIISAS Jo aAndalqo ayJ,

* + *sjuswalinbal sourwo)Iad
[BOIULD3] S199W JBY] WAISAS YTI[J & OJUI SPIJU S 13SN/ISWOISND JO
uorjeULIOJSUR) 9y} sapIng Jey) uonoun} y :JurIaduiduy] SWaIsAS

356

yudwdojaaag uaan(g syjuawarinbay
00L -aad

‘ugisop Areurwijoid pue uonuap 1doouo) :g sseyd —

‘sapen) enidoouod pue uoniulyap suawaImbay vy aseyd -
‘sisAjeue

s1daouoo pue sjuswaninbar Areurwipard v aseyd-ald —

*9[0A2 911 109f01d a3 Jo saseyd uone[nuLo
o) Surmnp yoeoidde dais-£q-dals ‘JeonAjeue
‘OQATIORISIUI Uy :34npPadotd udisy(] pue sIsA[euy swdjshg o

357

juawdojaaag uaan(g syudwarinbay
00r-aay
[2POJA 211Pad0ag usisa(pue sishjeuy swajscg

INIOd NOISIOId = dd

LNINJOTdAdd
SIHLSAS

SISKTVNV
hmtmuzou
NOILLVAITVA ANV
NOILLVDIIIYIA
‘MITATYU

ONDINVY
SLJdd4ONOD

SLJIDNOD ’

SIH.LSAS \/
SASVHJ

NOLLV.INIWATIWI
STANSVIN
HONVANIOIUId

4 4SYHd ISATVNYV STVOD
ANV SAgiN ¥3sn

N;E i) — e

aNv

SLNIVIYLSNOOD
SLNINFAINOTY SWALSAS

358

PYI0
$33dg-q ‘AIeuondi(q eie(q
sisfjeuy YSIY ‘A ¥ A
(dSd ‘YOO ‘dsr ‘as/vs)
S3130[0POYIA
3AN)IINYIIY WIISAS
swe.agelq Mo eje(/|o1uo))
[PPOJA SIudwRINDIY .
[9POJAl suonesddQ

SuruUIdUy daeM)JOS

juawdo(aaaq uaan(sjudurdrinbay
001 - AQY

2410
XLIJBJA] UOIJBIJIIJ A DUBULIOJIDJ
[OPOJA WAISAS

suonedadg uldisa(q

aseqeje(103foag

s1daduo)) wdIsAg

sjuduwRIINbay woIsAS

sisf[euy sjeon

SurIduUIZUs] SWIISAS

(K3ojounuaa | uowuio,) 410f paaN)

den) ay) Suidprag

359

yuawdo[aaaq uaauQg sjudwannbay

(S) s21nd1d ysnoiy)

oIEMIJOS PUE JIOMWEI], St Yons s]001 SV 0} $Tpliq,,

ym A3ojopoyow pajudLIo-109fqo ue saziun 01 - AdY
‘sourdiosip

JureauIdus usam1aq uonedIuNWWod oddns pue sar3ojopoyow
SuroauIdus 1UALINOU0D I[qBUD 0 ST 9ANRIqO 00T - AdY
'$$9000

weiSoxd asordwi pue ssooo1d Sunreourdus swaisAs sy poddns
01 01507 1uR0sy Aq padofeaap Ajtwey 1onpoid e st 001 - AAY

saAryeniuy 001 - Ady

001 -Ady

360

juawdo[aaaq uaanq sjudwarmbay
00r -aay

"$NSSI dJJIAUI pue
gurwn Ajnuopr 03 Juid£jolord pue Jurjopow JO asn PaseaLdU]
‘Funjoe) pue ‘uoljed0[[e ‘UoNIUIJIp ‘UOIILBIIXI SjusWAIINbIY

*$52001d UOTIRIUSWNOOP PIJRWOINE PUB JNJBWAISAS © JO 98]
"SUOISIOIP UFISAP
pue A11[iqeadel) pIodal 0] dseqelep paje[aLIdul ue uiejuie]y
$O1ISLId)ORIRYD onbiun - SAINQUNY —
SJUQWAJS J9Y10 01 syuI[- sdiysuone[oy —
§102(qo JO sse[o - sjuawa[yd —

UONIULOp SWIISAS J0j UONEBIOU 9[qRINJAXa ue JuidofaAs(

sjuswdAoxdur] SuLUISUy SwRISAS (00T - A

judwdoaaa(q uaan(g sjudwarnbay
001 - QY

"9oueuLIO)Iad OTWRUAD [[BISAO - [9POJA dsuodsayy/sninuing

"SUOTIROO[[E SIUSWAIINDAI W9ISAS SaUIJop - [9POJA UO1109uu0911u] Jusuodwo))

‘suo1ounj
pue $109[q0 WwaIsAs JuiuJop [OPOW WISAS - [9POJA lo1aryag enidaouo)

"SIUDWIQLY WIIISAS JO 9ouanbas asuodsal pue sninuwis - SOLIBUIS [euoneIdd(
'SMO[] 93eSSoWl [BWIAIXI - [SPOJA BIe(]

' $109[qO,, pue 1x21u09 WAISAS - [SPOIA 193[qO PHOM 18

WJSAS Y L, JO uonejuasdaday suljppon
AIRUONNJOAT] UY SIPIAOI] [OPOJA WIISAS pajeasdaju]

362

juawrdofaaaq uaau(g sjudawarinbay
001 - dqay

"AT[108, UOHEOTJIIS A OTWIBUA(] --gf= [°POJA [eUONRIddO
'OLIBRUAOS WAISAS YHLAVS

"IRILIM 11043y --g== 00q310N Surrosuidus walskg
‘sjuswalinbay jo Ayoserary

‘syjuawIINbay YHIVS

NUIIA UIRIA

ysno.ayp, - ylepm 001 - ddA

363

yuawdopaaaq uaari(g sjudwarnbay
00r-aad

NUIJA] UIRA] JaudIsa(q waiscs 00T - AAY UL

YEEYEYS
aseqelep
Apoey
weabelp
JUAWA
Hodal jeulanuy

Hodaa jeusaxa
‘/IA/ [e1sads

diyysiaumo abueyo
Aouajsisuod aseqelep Ydayd < > senunn
1611p3 193[G0 PHOM [eay Uado < T~ Vosses
1onp3 103iqQ wensqy uado < g
1031p3 Juawa]j uado < sjuawaiy
MAA JWBWAT-Hnpy uado < a4

abewy ynb 400 aseqeieq
abeui ases 0'v4-001AAY
S)LI3UII|3 AeS ovd 53
aseqejep aAes Js/001-0QY i
3SvD 01 podxa
ajeuyploqns o3 Jodxa
Jopadns o3 odxa
SjUaUI3|a JoBNX3
sjuauia|3 podun

364

wadwdopaaaq uaan(syudwaninbayy
001 -aay

3 062> Jo asnjesadwa) e e Jeioaseds ay) oy uonoalel r
1eay jo syem gs> Bupinbal uawniisul ue dojaasp 01 "NOILJIHOS3A W:-QEQ.___;u@N— N—rﬁm<m

211 "H3gnWNN
uonoaley jesl :aanoalqoleuoyeradp sajesodioour [g]
‘ssew By 9g> Jo uawnssu ue dojaaap 04 ‘NOILdIHOS3IA
1171 "H39NNN
ssepy Juawniisuj :aanaiqoreuonesado ssiesodicour [g]
‘yesosoeds QIWIL BY) JO SIUIBIISUOD BOBBIUI 8Y) O} WIOJU0D 0} "NOILJIHOS3a

1'F "H3gNNN

SjuIBIISUOY 9oepBlU| aAljoslqoeuonelad) sajesodioour (2]

‘0'y '} 2 Jed jesodoid ‘joy
‘wy 0§ ~ aaoqe uoibaz pasojdxaun Ajlenuia ayy 0) Buisuss
310WS1 UOISSILIA quuij YUED paJeljul jo anbjuyoa) uaaoid-soeds sy Aidde o) "NOILJIHOS3AA

0’} "H3IgNNN
Buisuasg aloway paiesu; aaoslqoleuotiesad) swswnoop [i]

‘S18084)
JESiweUAp SB 8sn 10) se1aads paall-Buo) pue ‘suonesjusduos satoads Joun weoubis Ajeospuayo
pue Ajaaneipe: ‘ainjeladwa) ofjauny Jo sjuawaINseaw ejeds-|eqolf Hunonpuod Aq arsydsouwnay}
13m0 pUB 8Jaydsossuw 8y} jo saNabiaua ay) pue aINIoNuIs [edWBUAD PUE ‘|BdIWaYD Teway)

ay; jo Buipueisiapun aaoiduwi o) s| Juswyadxa Y3gvs 8yl jo jeob |le1ano YL "NOILdIHOS3d

"HIABNNN
IXI'2YSVN :891n0g

365

yuawdo(aaa uaan(g syuduwaiinbay
001 - add

Aydaeaary] syuaurambay YAGVS

~108{gOeuonesad oalqoreuoneladp ‘Joslqoreuoneiadp

Airerd BWN|OA JuswNNS [
0 18jua)) Juswnsu| oA} Asul uonosIaY 1EH

vt

Buisuss
sjoway palenu)

366

juawdopaaag uaau(syudwazmbay
001 - Q¥

-asuodsal orweuAp walsAs sojensuowa(J
"[OPOJA WAISAS pajel3aju] ue sapraoid
-gouewio)rad pue AjeUONOUN) SIIJLIDA

*S90JISIUI PUB SOLIBUQDS WAISAS saulja(g

sure.agdei(q [eJ1oiaeyag Aq pajuduwdpduwy 001 - AAA

367

‘HIGNON

128loid HIBYS:0S

‘INVN

1950} WeisAg
SHOHLNY

ST

bueog

aueds oneydsowly

wreider(] jeroiaeyay
IWHLSAS Y3dVS

W

swnasut Y38YS

weysAs yIQYS

~oueiag K

eeqg
8A1823Y

368

SABER Instrument

Command
Sequence

Command
Queue

>
.)>

i

Start Scan

For Aill Scan Sequences

Acquire Data

Scene
Radiance

b
'rD

@t
3 3.B
I
Process/Tran Fogna:;ted
mit Flight Data a
| |
é SABER INSTRUMENT
Behavioral Diagram
8 16
AUTHOR: NAME: NUMBER:
System User S3:SABER Instrument 4

369

juawdopaaag uaan(g sjuawannbay
001 -day

[PUEJ [01JU0)) AJ[IIE,] UONEIJLIDA dnueudq YAIVS

)95 uueje ou
(uibeq) 00

11

4030adsuy sun awi| Y4 . sE
sainosay Nur} way| " :

J01293dsyy our duwn
eieig gz [sseooMd

370

J0138dsuj dun dw |
un wea/waeag uopIouny

314 1UBAJ adussues)

Ol &
w—— A—————

—Aan_o yowij BN 1dURd 03U0D JACQ

|sued jolluo) 4AQ

juaurdojaaa uaani(] sjuawarinbay

(11e)Q) ydsued |, JuAY YAUVS

(290 J9sN,

iU SPUBLILIOT pUNOID),) aBESSal PaAIaonal (PUBWILIOY SSad0.d uonoungawl}) fuonels puncio} 0'01
abessaw 10) Buiem (ejeq aaeoay :uonoungawiy) [1esn] 0°01

pajqeus (eleq aalgoay :uonoungawil) besnj 001

papue (spuewiwo) anss| juonoungawi]) [1asn] 0°0t

(£90% ,uonEIS punoin, 0 0 U U

,SPUBWILWIOD pUNOID), Wajawi],) 0} no abessaw Buipuas (spuewwo) anssj :uonoungawiy) [18sn] 0'01
abessaiwu 10} Buniem (esueipey suaydsoully (uooungaws) [aueog suaydsouny] 00
pajqeus (asueipey osuaydsouny uonoungawi]) [susog susydsowiy} 0°0

aBessaw Joj Buliem (asusnbeg puewwo) uopoungawi]) wswnnsu) H38vs] 00
pajqeus (scuenbag puewwo) :uofoungawt]) luswninsu; H3QVS] 0°0

abessauw 10) Builiem (SPUBLILIOY S§58001d/8AIB08Y ‘UonduNgawi) [yesoadeds} 00
Pa|geUS (SPUBWILLIOY SS@201d/aA180aY (uondungawn]) [yerosoeds) 00

abessaw 10j Bulirem (puelWO) $53201d Uojoungawl) [uonels punoin) 00
pajqeus (puewiwos ssavold :uonoungaw)) [uoneis punoin} 00

(0°01 0°01) Buppiom (spuewison anssj ;uonoundgawiy) [sasn} 00

Buipasooid (spuewwon anss| :uonoungawiy) 18sn} 0°0

pajqeus (spuewwo) anssj :uoloungawny) [18sn) 0°0

pajeas [suaog susydsouny] 00

pajea fluawnnsul 43Aavs) 00

pajeaso [jyessoedg] 00

paieaso [uonels punoio} 00

payeald [iasn] 00

(,suadg ouaydsowy,) ssaooid Buneasd [1v8loid HIGYS:0S] 0°0

(Juawnnsu| Y3gys.) sseooid Bunesd [1osloid H3GVS:0S] 0°0

{ yesoaoedg,) sseooid Buneaso [ioslord 43gvs:0S] 0°0

(.uoneig punoin,) ssaooid Bupeaso [1oslord H3gVYS:08] 0°0

(J8sn,) ssaoosd Buneao osloid HIEYS:0S) 0°0

pajeaso [10sloid H3AvS:0S1 00

yduosues] usa3

001 - aqay

n

juawdopaaa uaap(] sjudwarinbay
001 -aqy

(pug) ydidsuel], JudAj YAAVS

pareuiua) {ioslord 43gvs:0S] 0°00€

pajeunwis) [18sn] 0°00¢

papua (ejeq aa182ay :uonoundgawt]) [18sn) 0 00¢

(0'00€ 0'01) Buppiom (ejeq aniBoaYy :uonoungawiy) [1esn) 0°062

(0°661 0| .BIBQ 3DUB19S, ,821N0SBY,) PaAIBDaL S82IN0Sal (BIeQ 8A1809Y :uondungawiy) [18sn) 0°062

(0002 0°1 .BIEQ 80UB10S, ,80IN0SAY) 821N0S8) BupruNSUOD (BlEQ BAI80aY (uonoungawt]) [18sn) 0'062

Buipassoid (ejeq aa@0ay :uonoundawit) [1asn) 0 062

pasabbuy (ejeq amasay uonoungawt]) [18sn) 0062

(086 .UONEBIS punoIL), iU BIEQ 82UBIDS,) abessaw paalaaal (eleg aaaday :uonoungawi]) [s8sn) 0062

pajeuwal {uonels punoi) 0'062

papua (ejeq ybi4 $58001d/aN808Y :uolioungauwny) [uonels punoio] 0'062

(086 495N, 0 0 iU |1U BIEQ 82UBIOS,

wayawi].) o} ino abesssw Buipuas (eleq b4 SS80014/9A1808Y (uoloungawi]) fuonels punoin) 0'062

(0'0 0'002 .eYEQ 82UBIDG,

,801n0s3y,) 80:nosas Buonpoud (eleg Wbl 4 SS82014/8A1809Y “UoDUNgawi|) fuonels punoin] 0'062

(0'062 0°01) Buppom (eleq Wb 4 SS80014/8MB0Y (uoloUNgawn]) [uonels punoin] 0082

{(0°0 0'002 .B1EQ Wb 4,

,921N0S8Y,) PanIaoal saoInosal (ejeq Wbl 4 ssadold/aalaoey :uonoungswiy) [uonels punoin) 0082

{0002 0°002Z .B1RQ WbI4,

,821n0say,) 9a1nasal Buiwnsuoo (eleq 1ybI4 $$800id/oAte3aY (uojdungawiy) juoneis punoin) o'082
idisosuel] Juaag

372

0¢

" [luswiniisuj Y3gvs]
++ [Busdg ousydsowy]
~ [iuswinuisul Y3gvS]
~* [uoneys punoin)]

* [yesosoedg]

A p) [uonels punoin)]

(eyeq aAisoay) [1asn]

-+ [ausdg ousydsowly]

 [wewnnsu) 4y3gvs]
- [yye1000edg]

- [uonels punoio)]

[spuewwog anssj) [1asn]

I ! I ! |
00€ 00¢ 00}
auIT awi| uonlouNy

dUI] W] uoydung
JAA YI4VS

1no awi}

HEM Yul| Wl
Buisbbiy I
uonnoaxa paltabbin

Jlem 8dunosal

paiabbiy uou

373

| ¥4

s

00€ 082 092 0¥2 022 002 08L 09} OvL 02k 00F 08 09 Oy 02 O

'

eje(] 2U3adg
10303dsuy a>1nosay
IAQ UIAVS

' 0

— OV

— 00}
— 0c}
— Oovl
— 091

— 081

00¢

Junowe

374

juawdojaaag uaan(q sjuawaimbay

-Kreanonpoid arow sjerado 01 swea) 109foxd

Mo[[e 14 s[oo} Surrsaurud swalsks papie 19Indwod Jo asn oy,
s10afo1d 119y 103 sseo01d Surreaurdus suialsks

oy Jo[1e} 03 s1sauISuy swalsAS pue s1ofeueIA 100l01g mof[e
ma (1°Z21 L gHT) YooqpueH Suraurduy swalskg A9[3ue] v

‘Gurroourdus swalsAs 03 yoeordde 941109339 pue pauljap
[[om & sapiaoid sso001d Suresurdur swaiskg Lo[3ueT syl

Arewuang

001 - aAay

375

yuawrdojaaaq uaarg sjuawainbay
001 - Aay

‘s100lo1d uo ageyur|
JuswaIINbal 10911p pue UOTIBIUAWNIOP Pajewioine 10 poylouwl

*souI[dIaSIp [BOIUYD3) UM
uonesrunuiwod aao1xdwi 0} 93endue| [BITUYII) UOWWOD Y

*gouewIoyIad
wa1sAs Jo Surpopow pue uone[nuis prder 10J poyow
‘SjuouIdIInbal
100fo1d Jo yuowageurw) 10§ Iseqeiep pPale[aLul Uy

*ss9001d Futresuidus swaIsAs ay) uraoxdwr 10§ (001 [njromod v

:sapiaoad (0 - QA

Arewruing

376

- R ——LLELEeSeSeS—.—.—.—.—.—.—.—....S.—..—S—_—_—_—_—_—_————————————_—EEEEEEEEEE

3s€i3% noo5 7 N95- 16472

COMPUTER TOOLS FOR SYSTEMS ENGINEERING AT LARC) 0& é ;/

J. Milam Walters, Systems Engineering Office
Aerospace Mechanical Systems Division

The Systems Engineering Office (SEO) has been established to provide lifecycle
systems engineering support to LaRC projects. Over the last two years, the computing
market has been reviewed for tools which could enhance the effectiveness and efficiency
of activities directed towards this mission. A group of interrelated applications have been
procured, or are under development including a requirements management tool, a system
design and simulation tool, and a project and engineering database. This paper will
review the current configuration of these tools and provide information on future
milestones and directions.

377

The Role of Computers In LaRC
R&D

Computer Tools for Systems
Engineering

Presented by
J. Milam Walters

June 16, 1994

AMSD Systems Engineering Office

AMSD Systems Engineering Office

m Established via Center Reorganization after
approximately 3 years of ground laying

B Current staffing level - 5 CS

B Chartered to guide application of systems
engineering to LaRC flight projects

B Process detailed in LHB 7122.1, currently in
approval cycle

m Process applied to various projects, most recently
JADE and SABER

AMSD Systems Engineering Office

378

Systems Engineering Process

Gmln Amlyﬂl

Researcher u.. / EEU%:E[EI \‘

Decision Analysis

L 2N
-

Technical
Performance

AMSD Systems Engineering Office

Systems Engineering Office Tools

B Workstation Based tools consist of the
following:
— Oracle SE Project & Enginecring Database
— Excalibur Scanning/Recoginition Software
- RTM (Requirements Traceability & Management)
~ RDD-100 (Requirements Driven Design)
— Interleaf 6.0
— Matlab with following toolboxes:
* Simulink option
* System Identification
* Control System
* Optimization

AMSD Systems Engineering Office

379

Oracle SE Project & Engineering Database

8 Oracle RDBMS Version 7 relational database on
SUN Sparcstation 10, Model 41

B Oracle*Forms Version 4 provides graphical user
interface for record & graphic viewing

B Oracle Data*Query performs complex searches

m Database consists of pre-set form types, with the
capability to quickly generate any new table type

® Database will store project documentation and
graphics as well as engineering data tables

AMSD Systems Engineering Office

Excalibur Scanning/Recoginition Software

B Interfaces with document scanner to read and
interpret input

® Contains an adaptive search engine to retrieve
desired document

m Displays original image upon match of a given
search

® Provides the capability to scan and store input
documents

AMSD Systems Engineering Office

380

RTM Requirements Traceability &
Management

® Application developed especially for tracking and
managing project requirements

m Utilizes Oracle database to store requirement
information

® Provides special tools for:
— extracting requircments from source documents
- expanding and focusing requirements
- general requirements maintenance

® Includes output bridges to RDD-100 and Interleaf

AMSD Systems Engineering Office

RDD-100 Requirements Driven
Design

m Facilitates the construction, maintenance, display,
and documentation of design objects that specify
behavior

® Objects are created and edited by graphics or text,
with multiple generated views available to gain
different perspectives

® Includes a simulator which directly executes the
design objects

® Templates and consistency checks verify system
design sufficiency

® Bridge to Interleaf is included

AMSD Systems Engineering Office

381

Matlab

B Interactive software program for scientific and
engineering numeric computation

® Combines numerical analysis, matrix computation,
signal processing, and graphics with a user
interface through standard math notation.

¥ Functions include differential equation solution,
polynomial operations, matrix computation,
complex arithmetic and signal processing tools

® To view data graphically, MATLAB provides 2-D
linear, log, semilog, and polar plots, and 3-D mesh
and contour graphs

® Works with MATLAB numeric conpputationt gincering ofice
software package to build mathematical models of

Database Population

SUN Sparcstation 10
Database (se_sunl)

Electronic Files Administrator

Hard copy
documents

Document
Scanner

xcalibur OCR
Software

AMSD Systems Engineering Office

382

Requirements Management

SUN Sparcstation 10

(se_sunl or se_sun2)

Electronic Files Systems Englneers

Hard copy

Requirements
documents

Document Scanner Interleaf

AMSD Systems Engineering Office

System Modeling & Simulation

SUN Sparcstation 10
(se_sunl or se_sun2)

Systems Engineers

Behavior Diagram

g

System Analyzer (SA)

Dynamic Verification
Facility (DVF)

Interleaf

AMSD Systems Engineering Office

383

Tool Interface Overview

0 \
SUN Sparcstation 1 | _.,'

ReqyiamentsZiqacibilty & Oratly.
nagemer
Database

Electronic Files

RTM Interleaf L
nterlea a
R p———— —.__J
g =
E Macintosh
T

a7

—_—
UNIX
System

AMSD Systems Engineering Office

Summary

B The Systems Engineering Office of AMSD has been
established to provide for computer aided:

— systems level behavior modeling and simulation of new concepts
(RDD-100)

- subsystem mahematical modeling and simulation (Matlab)
- requirements tracking and management (RTM)
- storage of project and engincering documentation (SEDB)

B Interested parties should contact Richard Foss at
4-7049 or Milam Walters at 4-3014

AMSD Systems Engineering Office

384

A Distributed Computing Environment for Multidisciplinary Design

The Framework for Interdisciplinary Design Optimization (FIDO) project has the goal of devel-
oping a general distributed computing system for executing multidisciplinary computations on a
networked heterogeneous cluster of workstations and vector and massively parallel computers.
This project is a part of the Computational Aerosciences (CAS) project in the High Performance
Computing and Communications (HPCC) program. The FIDO system provides a means for auto-
mating the total design process. It facilitates communication and control between components of
the system, which include the diverse discipline computations involved in a design problem and
the system services that facilitate the design. In its current state of development, the prototype
FIDO system is being applied to a token example of the optimized design of a high-speed civil
transport (HSCT), involving a simplified problem that includes the disciplines of aerodynamics,
performance, propulsion, and structures, but with very few design variables. However, it has
already demonstrated the ability to coordinate multidisciplinary computations and communica-
tions in a heterogeneous distributed computing system.

The concept being used in FIDO is course-grained parallelism, with instances of the disciplinary
codes (aero, structures, etc.) running on separate processors., under control of an executive on
another processor, and exchanging data through a single data base manager (on yet another pro-
cessor). To allow the user to monitor the progress of the design iterations, there is a graphical user
interface (which tracks the execution of codes performing the design iterations) and a separate
process, called SPY, which allows its user to extract and plot data produced during current and
previous design cycles. In fact, multiple instances of SPY can be executing at once, so that the
designer can call on discipline experts and they (possibly from some remote location on the Inter-
net) can examine the results being produced and provide advice. SPY is currently being upgraded
to provide the capability for the designer to make changes in variable values during execution and
so guide the design process.

The distributed computing system currently includes Sun, Silicon Graphics, and Digital Equip-
ment Co. workstations. Provision has been made for adding connections to Cray vector comput-
ers and Intel parallel computers, and preliminary checks of connection procedures have been
carried out. A communications library has been written (implemented using the PVM basic
library developed at Oak Ridge National Lab) to provide the versatility for transferring data pack-
ages ranging from single variables or file names to large data arrays.

The current Motif-based Graphical User Interface (GU1) consists of three separate elements:
setup, application status, and data display. The setup GUI provides the user with a convenient
means of choosing the initial design geometry. material properties, and run conditions from a pre-
defined set of files. The interface displays the choices using a series of pop-up Motif data win-
dows, and allows the user to modify and store new condition files. The application status GUI
allows the user to monitor the status of a design run. An example of this display is shown in the
slide entitled “FIDO User Interface Concept”. Within the screen on the left part of the slide, the
upper left window displays current run parameters and contains pull-down menus for setting vari-
ous options. The right window graphically displays the state of the overall design process by
changing the color of each labelled box accoreding to the work being done. A color key is shown
in the lower left window. Additional detail of the system state can be obtained by selecting the

385

boxes with a 3-D appearance. Doing so brings up an associated window that displays sub-detail
for that box. The data display GUI is the third interface element, called SPY, that provides the user
with a variety of ways to plot data during the design process. The right part of slide is an exam-
ple of a color-coded contour plot of wing surface pressures. The buttons at the top of the plot win-
dow provide the user with a variety of view controls. In addition to contour plots of aerodynamic
pressures and structural stresses on the wing, SPY provides line-plots of cycle history for a vari-
ety of design parameters and data results. An example of this for a 20-cycle design iteration is
shown in a later slide. This slide illustrates results of using FIDO to minimize the total weight of
the HSCT for a 6000-mile range and Mach 2.4 cruise speed. Discipline sensitivity derivatives are
calculated using finite differences, and a linearized model based on these is used with the optimi-
zation subroutine CONMIN to determine new values for the design variables at each design
cycle. The slide illustrates the component weight reduction over a 20-cycle design iteration sub-
Ject to design constraints on structural stress and deflection. Weights have been non-dimensional-
ized by nominal payload. The slide also shows the changes to the three aerodynamic design

variables (lengths non-dimensionalized by wing span) and two structural design variables (non-
dimensionalized by initial skin thickness).

386

— JJ
leyndwoo (sjoquo))
ISlIB1ed (3 [I=] Jeyndwoo
10309 (Uoisindoid (soueuliopsd)

@@ @@

uonels
HIOM

@
yedolly

a0 (Saipnys) (sojweudposay)
=

juswiuodiAug wajqo.d Ateundiosipisiul

‘swisysAs bunnduwies

snoauabolejay uo swajqo.id uoneziwndo pue ubissp

Aeundiosipyinw 1oy Atessaosu Buldnoo Aieundiosipiaiul sy}

Buneypioe; Joj ‘ssuljepind Suiuurelbold pue sjoo} afemyos
Jo Bunsisuco “Yuomswey jeuoendweo eseuab e ysiqeisg YoH

uoneziwndo ubisaq
Aeuidiosipisiu] 10} yiomawel - OQE

109foud OQI4 AsibueT YSYN 9yl ©

-

>,

387

wdjqo.xd aures a1y} Jo sjred uo A[snodue)nuils J3Y3o303 SUDYIOAA

HI0M}IU JIA0 PIANQLYSIP vIEp pue siyndwo)

i
i
i
i
k)
!;

T
v o
-t -
s e g swvitre
O o o 1 W Bt
————— o o - Pt S SO
T " £t D £ PUO A/ JYP{ * rve «
i e @ prmey
SNV Ar s £ (¢ TS St
TR | (RO W+ SOV
10 N 191 PO s Sy SUBN ¢
Lt - P G AT
- tor @ mwvser
oeme

4t
i
i

masry —a—yry

31
il
t

S91}[BI103dS ISIAAIP UM SIIsn Jo dnoas)
:J0] JURWIUOJIAUY Sutwels50ld € dopaaq
1d35u0) |

388

Jyndwod
[°Irered
|—| 19Indwod

) J0JIIA HOBEISHIO M

supndwo) ﬁﬁzﬁﬁmwm mﬁgmwmﬁmﬁm
JUBWIUOJIAUY

waysAs
u:mEmmm:ms
_ eleq

~ Buydnog
Emc__a_om_n:_:s_

:..__m__mm& sisAjeuy
I1saQ aujdiasig
aoedsousy

ABojopoyispy
uoneziundo

siseydw3 dJ0dH J4eT uadng

AGE ny

GRRINAL P
OF POOR QuAY.1py

390

Bundnon
Areundiosipyinp
a|dus

Alasuas
aduaiaylg
SHINE

Bunndwon
uoneISHIoM

wajqgodd
ubisaqg
Buipjoyaoe|d

Ajswoan
333(Q
Beiq anep

sisAjeuy
aupidiasiqg
paiydung

Abojopoyiapy
uopeziundg
xogd xoelg

sjusuodwon OQid waliny

391

MUALTITY

GRIDINAL pa
OF @UGE ~

alnyny ay} ui paqgisa} |ajjesed o} uonelbiw
‘JUBLIUOJIAUS UOIIBISHIOM palnqLilsip e uo uonejuawajdwi [eniu)

‘wajqold snooy
ay)] se uoneanbiuoco (1 OSH) Wodsued] [IA1D paads ybiH e esn

‘sapod sisAjeue Buusauibua busixs asn

*0}8 ‘sa|qelsea ubisap ‘suonipuco ubisap
‘eldaldo ubisap ‘sauldiosip J0 }jas aAljejuasaldal B Japisuon

"uonejnwJo} uoneziwido/ubisap J0 8doos NI

yoeo.iddy

392

HSCT Baseline Description

//l Il 4 :’;///“
I Il""é/"‘y‘\e
/A
74

&
8)
R

393

RO
R \\\\

)
c

o .
= £
O o
c 8
QO o
O
cad
De 3
U’m:a
m —
[AE

7
o
ES . o
oo WN
QmMQ U
ocg
o © £ O
o9 &-
c Py
m%g“’
xa g=

sl13indw oo 10}93A pue
jojjesed Aj@Aissew uo uoneziajesed uiesb-auly yum buoje
}lomjau Jayndwods snosuaboislay e uo uonezijsjjesed ulelb-asieoo ¢
saAleAlap Alialisuas anAjeue-isenb ¢
sapoo auldiasip Anjepy Jaybiy °
wajqoud uoneziwndo pue ubisap oisijead ¢
wia] Buoq

}10M]BU UOIIBISHIOM B UO uolezijajjesed uieib-asieod ¢
SaAlleALIap AJIAINISUSS 3duaJayip-aiul) ¢

sapod auldiasip Aljapl-moj

wajqoad jppow paduwis *

w.ia) poys

shoo4 108loid OQqild

394

ybism
1821undo sz -
:aanosiqo

- SRAlBALISD

uoyeziamdQ LOSH
uR[qoiy ddurexy OUIA

395

z

suofjoe|jep
sessalls

alejd jusjeAinbg

uopienbe ebusy

SaAllBALIBD pue
sasuodsal WalsAg

Wbem sziwiuy

=

sa|qeLeA
ubisap maN

}o8p auibug

IS ofe

wuy) Sy

.4......-_______......_

1
1
1
1
1
1
1
]
]
1

0OAIY

“a
JeaurT .

X]]
h sa|qelieA Aljawoaeb u suoljipucd
ubisag - aseg o4

weabelp wejqoud | HSH

)

ol

—

396

jueljnsuon N\ | /V Jdubisaq

2

0z9LZL 8 v 0,

S %
ﬁ —) 7> ol0hD

anjep

Heo
0
10000 gy,
124D e .
n b Apald \ ¢m
v
sy pocowmon .,H HISUOD SSa)S »

00[yeaug o
yb1am o

,ME i.?i AioysiH e
==y L\ Y

1doouon aosepajuj 49sn oaild

397

uoneziundo

cozw..:c

soiueufpoisy

Ww3aishs uorinoaxy Oaid |

398

SULI99)S USISIP I0J SI[qeLIBA SUIAJIPOJA -
Aredrydeas sajqeriea suidejdsiq =
ssaagoad [euoneindwod SULIOJUOJN =

- 1oy Ayiqeded (X 4SS, sapnpou]
S3Injed) 3uIdsnqap Jo AJaLIeA sajerodioouy

uoneIsi wa[qoad Ased 10] ULI0] JBNPOW SBH

surexgoad 1nduwod spdymu
asn jey) swa[qo.ad Jo A)3LIeA IpIism B 0} d[qeidepe S|

JUWUOJIAUD sunnduwod
SNOJUIZ0.I9)3Y Ul [0JU0D SNOUOIYIUAS SIPIA0L] [@

399

saulepinb Suiwwesboid uonesiidde °
Spasau aJeMyos wajsAs °
:SUoljepUaWIWO3] 3IBMYOS

sajejdwa} JoAlp °
Aleuqi) Jebeuew ejep *
Aieaqi) uonesIUNWWOD *
aoeyIajul 1asn *

:1jjo0} adAjojoid

Aiejalidoud-uou ¢
ajqenod ¢
le|jnpouw ¢

a|qeldepe
sapod Jaindwos-ijnw ‘auljdiosip-ijinw adAjojold

sjonpo.d 199loid Oaid

400

CClZ S3LIOJJAIIP paanjongs [Q
s9jejduwg) SulwrweI3old @
BUIAYDS BJRP PIaseq-3[ij Isn 1
Joseueuw aseqeied @A
sp.Iepuejs 3uissed-agessow Isn 1
AJelqI| suoeduUnuwuo)) @
L1ejaridoad-uou Spqerrod ‘xempout ‘s1qeidepe aq 3
saurfaping uruIwe.Isod m
S9JBJLIINUI IPOI PayIddS m

401

Siojauleled uoljez]}alosiqg -

Beiq pue y17 - suoipuo9 bl -
uonnquisig Yi - uonduosaqg A1swoar) -
Indino “INdNi

‘uonjdiiosep Anjpwoab siduwis Atan sazinn

(lesuidwa) Belp snoasiA : LY4QD/VIHYM
uolje|nojes Beup anem :JAVMY

Buim sy} ssoioe asuaiayip ainssaid g Y1y 03 anp Belp : SIAONIM

Aioay} Jeaui) uo paseg

solweuApolay Ajljepid mo

402

sjuswaoe|dsi(q - SSaUYOIY] UIyS -

Sassalls - Ayawosn Buipg -
wyba [e1nonis - (o48y wouy padinboe) saolo4 -
iNdino 1NdNI

‘aje|d yoes 10} paulyap aie sSauydly] pue laquen
‘wiosueld Buim uo paulyep sajeid Jo salas e sasn S4V13

(Sdv13) uonnjos ajeid psjeuiwe juajeainby

sainjonJls Alepi4 mo

403

sniyj -
"ON Yde|\ pue apniily -
uopdwnsuo) jan4 - adA| sulbug -

1Nd.lno LNdNI

404

(YSYN 3g1) simeT woly ajnpow uolsindold | [gAsT o

uois|ndold Alijapid moT

Jybiam [ejol pajewnsy -

Beiq pue yYi -

ybram [end - abuey paxid -
IndINo INdNI

uonenbg abuey jenbalg o

aouewiollad :o_mm__z. Alepl4d moT

405

"SaAlleALIBp AjlAlISuss
paquiosasd ay} 10j apo2 ay} (A|jesnjewolne) sppe pue apod
ueiHo04 3yl sazfjeue Ajjeonewolne yaiym losasold-aud e azinn

saAlleallaq AllAllIsuss
|[eonAjeuy-isenp Jo uollasu| dijewoiny *

‘ap02 sisAjeue ay} 0} Way} pPpPe pue SaAl}eALIap
Auallisuas ayy Aq saiysiies suoljenba Jeaul) ‘Joexs ayj aAusq

saAneAllaq AllAIlsuaS
[eonAjeuy-isenp Jo Uuoiuasu| jenuepy®

‘a|qeneA ubisap ay} Jo sanjea jualayip Ajlybis yum sasAjeue
OM] U3amlaq aduaJtayip ayl bunjey Aq AlAnsuas ay} ayndwo)

sadualapljig =21uli4*

dd9o ui sisAjeuy
AliAllIsuag 0] sayoeouddy

406

juoli4

— o -

| L dMST

oL

sa|qelie) ubisaqg w.iojue|d BUIpn

407

0c 91 cl 8 14 0
sssis pieoqing O I]] T

(3]
M

uoioa|jap di jeuoisioy
Beiq
UM

SSalys pieoqui
uooaiyep dy |BONIBA

jend
|einjonis

jelol

01 31249

sSauxoIy} pJeoquy

sSauyoIy} pieoqinQ
yealq asimueds

ployo jo0H

(sueipels) deams =7

uonn|oAa ubisag

/

Ki01s1y asuodsay

Tr—

Aioysiy ubram)

SN

-
-
-
—
-

N\

Ki0s1y aiqenea ubisaq

J

N ©

o ° @

9t

peojAedpybiam wnuwixewy/asuodsay

anjeA [euolSUawWip-UoN

408

JUSWIdSBUBUI B)EP Paseq-d[yj Jo ANMIqIXo[] M

nm\ﬁmmx
ysnoay) Aeydsip sonydeas pue Suriojruoy [

(DHA TOS ‘ung)
SUONEISHIOM o XTN(] JO F10M)au U0 3s() |

w[qoad ugisep 1)HSH dfduirs jo uoneziumd() B
- PajeIISUOWAP Sey WI)SAS O] 4L,
SyuwYsyduoddy

409

ssurpuly ysiyqnd pue 31eM3J0S 3y) Juawndop A[n.g

[013U0) 10] pue
dnjss ws[qo.1d 10J saoejIsjul Josn [eorydeas A[ddy

surea3oad J193nduwod
sisA[eue JIPPY-YSIY Y AIRp-mof oedoy

wR[qoxd
U3ISap DSH X3[duwiod € uo QL 31e11Suowa(J

410

soydeusb -

uoisindoud ‘sojweudpouse -
aoeyajul Jesn
suone2IUNWWos ***
sainjongs

sainjonJs -

soiweulpouse
aouewopad aziwundo

souewopad ‘sainionays
lojeisiuiwpe waysAs ‘soydesb -
laziundo -

solweuAposae

aoeuaul Jasn

uoisindoud ‘sojweudpouae *
suoljesiunwwo? “4aubisap josloud -
labeuew ejep “1apes| 10sfoud -

swepy Alepy
uaalx) Alen
llepuey uoQq
11942040 woy
uuaJip bbain
sa|In) Aley)
Buez woj
uao) laled

.sjueljjinsuo)

ystewe lig
spiemp3 UIA[B)
sawep uag
ueuysuy Muey
sajey) Aey
puasumoy wip
uospIz woy
uoilssm qog

:dnoJb bulmwieibold

sypal) 108loid Oqid

411

ATOJEI0(E | SOTUOI}O9[] 10] USISa(]

pUe SULIsaUIoU] Poply Jajnduio))

Y} JO MITAIRA(UY

412

Surrsoutdus eondo «
Surjopow wa)sAS [ONUOD o

spIeoq 3noI pauud pue
SIINOIID pajersalul djqeunueidold Jo uSISOP JMOIIO STUOLIOISD o

se yons saurjdiosip Suueaurus Auew 03 9jqeordde
AIe YOIYMm SJO0] 2IBMIJOS JO AJOLIBA SpIM B SISO ATV

*JUNODJE I9SN © UTe)qO
ued a9kordws As[Sue Aue pue 32IN0SAI SPIM-INUID B STV

ToTNpoTIu]

413

-

=g

BEE

BB E

60z1 "bpig e ZozL ‘bpig e oY
YS! WY LET Ny m Yerz Ny T Ny unu zx ‘Yz WY ¥ WY 15t Z0Z N (=T Y
zss303s) NVOHOW A3NHO4 HINOOH NOL130N3d uwwozw: MYHSHIY 1¥vTUS
ot 5% 00iC_SA PELGON $9BL0IN bmaoz 0l SS Xdl SS LGON - oiwso) SS oL S5

grzi bpig vzoll bpig v¥21 bpig ozeAwRIUd
oonn>x
Y01 MY <§._mmﬁ ﬂ i
N
Je30ld 009LdH xﬂm.w_.% Xd! SS
Jejuudoyvds — o (e -
+ | - .l-!.......-.:_
m
Zrt MY Zit NY 8Ll MY \.n_ Ny 8Z1 N¥ Z0l Y 8ttt WY L0 WY
WHO EERE] SSvD 000K NOSNIAUS ANv3 WYH13d
001 SA 00l SA 0OLE SA 001is m> 9L10ON 1261Q0N 196LQON I96100N
8zZL Wy orl WY orl Ny —n_ zm 601 WY £OL MY g1 Ny Tit NY 204 WY
ABSON INOHVH HIONVTIY NOSIa3 OHN vNO3d L1INDId 3T TILNIE0N
2L 1IN 195LQON 196 0ON utouz X OUYdS X OWvdS Xdl SS Xdl _SS Xdi S5
m ““ m “ “ “ TL “__ r hr h F h —_—
1NUPAdYYdS
agsL m
ZIL NN Jejuud)yYds 133ULSONOY
Q981 QNO6!
9
Je0ld 00BLdH £s 1opon
xoqeynpt

szjc—g
JOUUdIYYdS

t

L f———_]

xogeqnt 00
#9018 01

WHALSAS HAAVDO HHL

414

soLIBIQI] AIpUNOY]

judtussasse pue uFisop [BIMOANYIIY - SYAVY
+HO%®D

JOJB[NWI SMOPUIM JJOSOIDIA -SMOPUIMIJOS
Joyepnuugs pue 1oj1dwos DOZESNLL
105$920.1d plopy - JOYBWSWRL]

a8eyoed Suimelp - meigalo)

afeyord Qv - peooiny

sisAjeue pue ugisop jeondQ - A9poD
[OUuaqIoMm JUSWIIISUI [BNIITA - MIIAQRT]
Jorernuwuis 11noxd Sojeue pue [N - 901dgq
HIOMOUIRL) JOJR[NUIIS ADIAAD (JZ - OOBA[IS
Anua uBisa(- sesodwo))

Anus ufisa(g - prenSuep

Jojernurs oo - TX Joiiep

[00, PoISOH

wsAS 90UBINSSY VSVYN - SYN

aseqelep Jusuoduwiod JAISSeq - 7/1809Y SHI
aseqejep Jajaurered 9121081q/JI - DSII SHI
‘IPIM - ADUATY

1055000.1d pIopy - 109119 PIOM
uonejuundog

aseqejep [euole|ay - 9[ovIO
SoSEqETEQ

001 JIOMIAU [BININ] - XOG[OO], JON [eInaN

X0Q[00] [0ONUOD PIdUBYUF - X0Q[OO], 1SNqOY
SurieauiBus wasAs jonu0) - X0q00], [0NU0)D)
j003 Buissaooid [euSiS - xoqjooy, [eudig

swalsAs orweuAp sajejnwig - yuijawig
uonejndwoos sudwnu soueunioprad ySiy - qejre

[001 1noAe - 01891y

sisA[eue Jurui], - UNIIOA

sisATeur uonedissip ‘1omod ‘ssol§ - WIB[Y I{OWS
sisA[eue JI-Jeym pue JJO-apel], - Ja)0[J dlLIdweIed
Jorenuwis swiSus-ninw suejdyoeg - wiguadQ
uBisop pJeoq paxIuw - JUSWUOIIAUY UOHB[NWIS [BUSIS PAXIA
Joyepnuuis Sojeuy - snig 901dg

Jorernuuis JqH Sojeuy - 9[yoid

udisop q'1d - 1wusiseq Did

loyenuis JAHA - Soxydea]

sispeus pue udisap [endi(q - youagyiop 21807
sisA[eue pue uSisap Jopeuy - youaqyiop, Sojeuy
Anus udisa(q - 1daosuo)

S[OO], USIS9(] 9ouape,)

S[00], 910)

STEATJOS HAAVD

415

spIeoq 3noIrd pajuLid Jo Jnokey - OISV o

JUQUWIUOIIAUS UONB[NWIS [BUSIS PIXIIA o

JUSWIUOIIAUS USISOP SO[eUR - YOUIQNIOM SO[BUY o
JUOUIUOITAUS USTSOp [eNSIp - I0uTIS9(] YOUIqJIOp IS0 »

JUSUIUOIIAUD
u31sop 1NoIId pajeISaul sjqewrueiford - 1ousisa(DId ¢

1ojernuais pue Joqrdwos o8endue] usIsop Sofeue - 9[YoId o
Jore[nuuls pue I[Idwod TAHA - so1ydea] «

Joje[nuis pue IS[IdWod SOTUISA - TX SO[LIOA

A13u9 uS1Sop SNRWAYDS - 19sodwo)) «

Anue uSisep onewoyds - 3dodouo)) «

"SpJeoq 31O pajuLid pue SINOIID pIjeISAUL JO

uSIsap 9y} 10§ S[00} J0USPE)) SUIMO[[OF 3} $IS0Y HAHVO

S[00], USISa(] 20U9pe.) I L,

416

- uoney
..:u_wu Sunun

“pue jnokey

ﬁ

ajno. pue

2oud vodd

~ uoyezuindo
- [ednyodyoIe
VOdd

a

| mw..e.:xw
Suisn SISOUJUAS

4

X S0p1IoA-~
3oydeary-

_ uogenuis

H

:c:n:ou% 1Sd-

saLleaqgiy
Tensiq

: .9y A1ad-

o;a:.o__om :_oocou-_
ks Bopraop- wo:&ha—w—
- TAHA- <0&Q4m

_b::m udisaqq

417

sAe[op Sunnou

1s1p3ou [eorsAyd ﬁ

auejdyoeq unguadQ saLIeIql]

ole o1je
-wayos 1daouo))- -waYos 1daouo)-
X SoJuIoA - [opows SO[1I9A - o[yold- [opout 9[yoid-
Soxydesy- [opow TAHA- snid OI1dS- [opow 201dg-
| | wonEulg Anyug usisaq uoyenuig Anuy usisa(q
N YouaqI0pA 1507] youdqyIop Sojeuy

418

"HO 2P0 4q papunj pue pim
Aouage s1 9suad] InQ "saxoqaynl o1 Ul sD (9 UO PaUTBIUOD SI
pue (SHI) SWISAS SUI[puUeH UOTIRULIOJU] WOIJ ST 9XBM1JOS Y], *

"UOTIOUNJ pUR ‘SOTISLISJORIRYD ‘roquunu Med Aq payoress oq ued
sured oy [, ‘sjuouodwod aarssed pue ‘S10}9NPUOITWAS 9J2IOSIP
‘$JINOIIO PAJRISAIUT UOI[[TW 7 JSAO SUTBIUOD 3SEqRIep O, e

"A[yuow-1q pajepdn ST yorgm suorjedyioads pue
syjooqejep 1red STUHONOI[S JO dseqRIRp dUI[-UO UR SISO JAHAVD °

419

STA 1910 UI SJUSIIISUT
S8 pasn oq ued YoIyMm S[A qns uuoj sjuouoduiod 9say) 10139807 - surerSeip pue sjoued [9AS[-MO] «

O/1 peneuuo} pue ‘sisAreue ‘uonisinboe 10j 1A oy weisoid o) pasn - weiderp }00[q [9A9[-do], «

yuswnnsur 9y jo sindino aatasqo pue sindur Ajddns 0y 9oegISIUT SATIORIAIUL - [ouRd JUOI] «

suoneiado Aeuy- preoq uonisinboe vep ur nid

O/1°1d- sousneg- Y IXA

jndino AdoopireH- Sumy oaIn)- q140

ooepIo)ul Josn [edmydern- dsa- 767- SY
uoneIuasald ereqg sisjeuy ele(q uonisinboy eleq

IAQET] UL AOY Bl

AITAqE]

420

2H

ZH

D" 008G

o.mov o.wom o.wom

o.wOﬁ

0°0

0°0Gh-
0" 00~

0" 008 -
-0°00Z-

-0°00T-

asubdsay aseyy

Ba(

Jayb1H

N
x
o
<
o

Ci3

J3mon|

N
X
Lad
<
~{

13

sbau4 330-3n)

D005

o.mov o‘wcm o.mow

o.wOﬁ

0'0

N

,//;:|||x|||;,o.om-

0° 02T~
0" 001~
-0° 08~

0" OF-
-0°0¢-
0°0

asuodsay aphj1ubey

(zZH) *ba44 Butiduesg

J423UTT snoNuTquo)
60 a[bursg
Redstq 493714

JapJp

ci

uoT3eNUa}IY

o

o

*

=

Xt
(4]

o1ddry

<
(=
*
f=
o
£33

f wwmaao.__m
adh| Ja3114

I ;u;osgmuuzﬂm

uB1se[Jo3[14

[sueq u0J4

S[dwex 1PN A1l JO [Pueq Juo1]

421

Te1]|. ‘bauq Butpdueg

[Ew vy
[Gaa]] r3enueday
Jaa]| 1ddry
IH 13pJQ
-[Zex]] weno
[[zen]} ey TH

<P

oo IPCOT

sa 4a3[14
i] 49314

wedberq oolg

STdmexy T3] Uil JO WEISEIq YooTd

422

"SWIDISAS OMWEBUAP JO UOTIR[NWIS pue
Surjopow 10J 9oeIdUT 19sn [esnydess e sop1Aold - INTTNNIS *

X0Q[00], JIOMION TeInaN
X0q[OO], [o1uo0)) 1SNqQOY
X0q[o0], SuISS9001] [euSIS
X0Q[O0], WASAS [O1U0))

:S9X0qQ[00] qe[IRA] *

‘sydeis g

pue (I7 JUSISHIP [BISASS 9JBISUSS 0} S[qE SI qe[IBJA ‘OSTV "019

‘sure1gold) SLM 0) 9B) PO IT By} SWT) JY) JO UOTIORL B Ul

sooLyew derndruew 0] SIS SMO[TR 3] “suoneIndwod oYnuUaIos
pue SuLouISus Joy o5eyoed soueunioprad Y3y e ST qepeN .

e

gV ILVIA

423

z [—
{paywi -pueg)
Ausuap swalshs snonuluo? 2usuap
jenjaads 18Mod 10} 3SION BUUM [esjaads Jamod
LAjIsuap 2uso [eubig
fe1ja3ds 1amod
[o X
adoog ydesn oooao
m 2adoog ydeso | uay reubis
m oo
18doag ydein ud4 Jgjsues] Lwng L
G2+ wng ¢ uay |eubis
m L H H ¢ oo
DooD

__114——1

apon aifig uojeinwis suondo up3 aid

WEISEI(ool JuInuiS

424

"SudIsAs Teondo FLIT
pue SV Y} JO SIsA[eue pue USISSP S} I0] POSN SEM A SpO))

"SHO] ®1A sagdeyoed INVD/AVD PUR ‘SISIOWOISLIAUT
‘NVAULSYN [PIM SIOBLISIUT)T PUB ‘UOIIR[NWIS 95BWI ‘SISATRUe
[BIUSWUOIIAUS ‘SIJBUITISI ISOD JOJ pasn 3q OS[e UBd A 9pO)) »

"SISYIO AuBW pUR ‘SIUWAS [eondo aAnoRIIp ‘s3urnjels
‘sprolo} ‘souaydse Surpnjour saoekIns jo sadA) Auew ss[puey I e

‘uS1sop reuy ysnoxyy ydeouos woij
swasAs 1eondo jo juswdofeasp sy st sasn Arewrnid ST JO UQ)

"SUI9)SAS Teondo Jo juowudie pue ‘SuLimjorjnuew ‘SUTISOd
‘Suroueloo) ‘uvonezrundo ‘usISop oY) J0J Pasn ST A SpO)) o

A 9P0)) = S9JBIDOSSY [I.IBaSay [edNja)

425

* S90TAQD JO 93UuBI pPEOIq © JO UOHJR[NIUIS SMO[e pue
SISLLIRD JO uoljeIouas Teondo 10f sopou sjuswd[dun snoutuin'y «

"S9OTADP IMIONIISOISIOY
JO UONB[NUIIS IO} SOPOD Y} SB [[oM SB NBD) pue IS Se yons
$I0JONPUODTISS JN0XI J0J SSLIRIQI] [BLISIBW SUTBRIUOD 3ZR[(o

SIUQWISLS 3INDIID pajeldajut rejodiq
pue SOJA UOWIWIOD JO SOTISLISJORIRYD [BOLIJO[S 9Y) SOJR[NUITS
ey} weiSold SUTOPOW 9DTASD [EUOISUSWIP-OM]) Y} ST SAOSIJ-S o

101dLuo], aSexyoed somydeis oy} pue
SIOJR[NUWIS SNOUTWN'] PUB ‘9zZe[{ ‘SIISIJ-S Y Jo pasodwio)) «

OJBA[IS

426

SI0JeI)STUTLIP®

wasAs gV Aq papraoid are sesinod poys XIN[JIseyq ¢

JUIUIS

pPUB MITAQET ‘QB[IBJA 10} S[qB[IBA® SIB S[BLIOIN) QUI[-UQ e

“PO[[BISUT 2JE SUOISIOA MU St pajepdn are pue arem1jos
qe[pue ‘sfenuew qej ‘srenuewt Sutoren Aq patuedwoose a1e S0apIiA 3sAYL (HLON

reusig-paxIN youagyiop Soreuy -
1deouo) M [T youaqgyiop Soreuy -
9AnORIAU] OIFIY -

onBwoINY 0I3IV -

SWMLIBA -

TQHA ©1 uononpoxnuyj -

SoxydesT giim SuuBise(g -

gouaqyIop 9180 qiua uSise umo(-doy -
1doouo)) ynm 1eulisa DId -

1dsouo)) -

:9[qe[TeAR 9Ie SOOPIA Sururel) 90uUdpe)) SUIMOTI0] Y],

SUTITEI]

427

6981 UOISUIIXI ‘A0T eseu-orer190ns3uo] @10 ueday Apuey

10BIUOO UOTIRULIOJUT [BOTUY0S} SHJ 10 ¢

'08eq owoH FAAVO DIVSOI U 398 $901A10G Surjpuey
UOTJRWLIOU] oY) pue JHVY) UO UOTJBULIOJUL [RISUSS JOH »

91 £ UOISUNXI ‘A0T eseu oIy uosyoe[@qiIp :1puelg uoq
01 LEp UOTSUAIXS ‘AOT BSBU"OIB[1991ISSUO] B)RAIIS :IOWIO)) 9AIS
:SIoJen)STUTWIPR WAISAS S, JAHVD Jo duo

10BJU0D WLIOJ JUNOOOE IOSN B UTR)GO JO UOBULIOJUL SI0W Jsonbal
0], "Sooko[dwd 191U [[e 03 J[qRB[IBAR I SJUNO0IJE JIVD *

TONEULIOJU] [e19U91)

428

The Software Engineering
and/or Ada Lab (SEAL)

Presented at the

“Role of Computers in LaRC R&D” Workshop

June 16, 1994

Robert Kudlinski

Information Systems Division

Software Engineering and/or Ada Lab (SEAL)

BACKGROUND (and HOME PAGE)

1989: ACD (now ISD) was charged to manage, develop, and assure
mission critical software systems for several on-going and all new

1990: The SEAL was a new-start to meet this requirement by
implementing a common software engineering process (people,

Rrocedyres , tools) across these projects

1992: Selected to participate in the NASA Software Engineering
Program

Since inception, the SEAL has received increasing requests from
other LaRC software organizations/domains seeking to improve

their processes. Existing and future plans to help transfer software
engineering technologies are presented.

429

Software Engineering and/or Ada Lab (SEAL)

LaRC SPACE-FLIGHT PROJECTS

The SEAL has supported numerous projects at various lifecycle phases:
CERES, CSI, DGV, JADE, LITE, MIDAS, RAME, ROVER, SABRE, SAFIRE,
SAGE_I]L SEDS, SUNLITE, and TRACER
» Primarily remote sensing, active control of space structures and
technology demonstration experiments
» On-board, embedded flight computers (primarily 80x86) for real-time
instrument control and data acquisition (3,000 - 25,000 SLOC)
» GSE computers (primarily 80x86 PC’s) for instrument development,
test, calibration and mission operations (5,000 - 70,000 SLOC each)
» Missions from 3 days to § years, development schedules of 2-5 years

Many technical and management challenges:

» Real time, embedded, and non-deterministic systems require
specialized tools and practices

» Physical constraints (power, weight, radiation) severely limit computer
resources (CPU speed, memory, VO) and demand optimization

» Insufficiently defined, continually expanding requirements

» Trading off quality and reliability with tight manpower and schedules

» Short term vision of projects does not help process improvement

Software Engineering and/or Ada Lab (SEAL)

HUMAN RESOURCES

Education and training
» Offering 10-15 classes per year through Training Office such as Ada,
objected oriented design, CM, real-time programming, rate monotonic
analysis and system engineering
» Developing, documenting, and video taping specialized in-house
training such as Ada programming, formal inspections, and using real-
time, embedded systems tools

Information Resources
» Library (books, periodicals, standards, guidebooks)
» Electronic information exchange and communications network
» Providing ISD user consultation service for Ada and software
engineering questions

Projects were assigned and the SEAL became a new start one year before

the current climate of decreasing civil service and NPS, which has curtailed
planned activities

430

Software Engineering and/or Ada Lab (SEAL)

PROCEDURE GOALS

e Standardize on and reuse common procedures, expertise, tools, and
products across projects
» NASA and other software standards as available and appropriate
» Object-oriented requirements analysis and design methods
» Ada used as the primary programming language, some C, C++

® Define and document key, repeatable software development procedures as
baseline for future process improvement and training new employees
» Formal inspections guidebook completed
» Configuration Management Guidebook in review process
» Guidelines for selected real-time, embedded system tools completed
» Evaluating existing, documented IV&V procedures
» Other procedures under development

® Moving toward a complete software lifecycle approach based on
evolutionary spiral model

e Contact Pat Schuler at 4-6732 for more information on SEAL procedures

Software Engineering and/or Ada Lab (SEAL)

TOOLS

® Operating a distributed software development environment via LaRCNET
Compilers, CASE, CM, and project management tools in place
Beginning to use InQuisix Reuse tool

Reverse engineering and code analysis tools

Electronic information management and communication tools

Plan to increase use of automated code generators and testing tools
Work from desk, SEAL, hardware development labs and test facilities
Standardized environment allows sharing of tools to reduce project
cost and effectively shift personnel in response to changing priorities

® Real-time, embedded analysis tools
» Embedded system cross compilers
» Emulators and logic analyzers for 80x86 and 1750A processors
» Functional equivalent 80x86 and 1750A flight computers

® Contact Jerry Garcia at 4-5888 for more information on SEAL tools

431

Software Engineering and/or Ada Lab (SEAL)

S/W DEVELOPMENT ENVIRONMENT

Sabre
* Mass

sorage

I
L

Workstations (486 PC's)
" find NT

Novait Server (486 PC) il
—_— O a1 N,
l —-ﬁ Capinlls FAX Windows NT completd =

<
Isch Library
* STILAS
* Future services
Satvee §00 MP

* TCP/IP soRware
+ Privaie & shared hles

Software Engineering and/or Ada Lab (SEAL)

NASA S/W ENGINEERING PROGRAM

@ One Code QE mission has been to improve the quality and reliability of
software products developed for space flight projects, both manned and
unmanned, at the NASA Centers

® The NASA Software Engineering Program was initiated in 1991 to establish
and grow Centers of Excellence across the Agency:
» JSC: Shuttle Data Systems Branch
» GSFC: Flight Dynamics Division (Software Engineering Lab)
» LaRC: Flight Software and Graphics Branch (SEAL)

® Longterm vision of the Program is to put self-sufficient, continually
improving processes in place, establish standards, and then use these
organizations to transfer effective technologies to other NASA domains

® LaRC tasks have been primarily in the areas of:
» Capturing and documenting the SEAL software development process
for small Ada projects and assessing Ada’s impact
» Improving software technology transfer methods and software reuse
» Evaluating IV&V procedures on LaRC projects and research testbeds

432

Software Engineering and/or Ada Lab (SEAL)

EXISTING GENERAL SUPPORT

Coordinate 10-15 widely attended software engineering courses per year
and sponsor educational presentations (e.g., LaRC/NASA management,
LCUC, Local Universities, Conferences)

Implement and fund formal inspections program widely used across LaRC
(training, pilot projects, implementation guidebook)

Serve on numerous review panels, technical committees and QAT’s

Transferring software technologies to other domains, such as NTF DAS,
flight simulation, HSR, and TAP programs - currently manpower limited

Open access to SEAL tools via LaRCNET - currently manpower limited for
training and consulting on these tools

Access to real-time, embedded system tools possible, but requires proper
training and procedures to be followed

® Open access to library (books, periodicals, standards, guidebooks)

® Started the Software Quality, Productivity and Reliability Team to promote

communication and coordination of software engineering efforts at LaRC

Software Engineering and/or Ada Lab (SEAL)

FUTURE GENERAL SUPPORT

® Continue existing work on previous chart, expanding where possible:

» Proposal accepted by Code Q that 90% of SEAL funding (FY 95-98)
specially targeted for manpower to transfer software engineering
technologies to on-going LaRC research programs

» Decreasing project load should provide ISD opportunity to shift
resources from space-flight projects to general support

» Partnerships are welcomed

® Increase use of electronic information dissemination, particularly MOSAIC

433

9.1
9.2

9.3
9.4
9.5

SESSION 9 CAE Tools
Chaired by

Carol D. Wieseman

Digital Control of Wind-Tunnel Models Using LabVIEW - Sherwood T. Hoadley

Electronic Engineering Notebook: A Software Environment for Research Execution,
Documentation, and Dissemination - Dan Moerder

IDEAS2 Computer Aided Engineering Software - Pat Troutman
Matlab as a Robust Control Design Tool - Irene Gregory

Simulation of the Coupled Multi-Spacecraft Control Testbed at The Marshall Space
Flight Center - Dave Ghosh, and Raymond C. Montgomery

434

Digital Control of Wind-Tunnel Models Using LabVIEW
by
Sherwood T. Hoadley

presented at the
LaRC Computer Systems Technical Committee Workshop on
The Role of Computers in LaRC R&D
June 15-16, 1994

Digital controller and data acquisition and analysis systems were developed for several
wind-tunnel models which use National Instruments LabVIEW® Software and National
Instruments Hardware within a Macintosh environment. The objective of this presentation is to

illustrate the use of LabVIEW for interactive animated display of acquired experimental data and
real-time control of some wind-tunnel models.

The first system illustrates a flutter suppression system (FSS) which was used to suppress flutter
for a small piezoelectrically actuated wing in a small flutter research and experiment device (FRED)
with a 6”x6” test section. The following illustrations are included which show various aspects of
the FSS system:
* A photo of FRED and a flow diagram of the wind tunnel
* A block diagram of the closed-loop system
* The digital control system software schematic of the LabVIEW user interface routines
on the Macintosh and the real time system comprised of boards plugged into the
Macintosh Nu-bus but sharing their own real-time RTSI bus.
* The front panel of the FSS LabVIEW Controller virtual instrument (VI) interface to the
real-time controller digital signal processor (DSP)
* Results of open and closed loop strain response to wind-tunnel turbulence

The next LabVIEW VI which is illustrated is an instrument which interfaces with a data logger
which samples various thermocouples and sends the requested data to the Macintosh for display
and storage. Two figures included are:
» The front panel depicting a beam clamped to a table with thermocouples placed at
various locations and a strip chart displaying the data.
* The block diagram of the code for the data logger which shows the way in which
LabVIEW is coded. As indicated, the code is a flow diagram of itself.

The last system illustrated is a system which provides passive control of three different

aerodynamic control surfaces for a Benchmark Active Controls Testing (BACT) model in the
435

Transonic Dynamic Tunnel (TDT). This Passive Digital Controller System (PDCS), developed for
the BACT, was used in the tunnel in November 1993 and will be used again in November 1994.
It interfaces with a real-time DMA controller to command control surface positions and excitations,
but does not actively employ sensor signals from the wing from which to compute control surface
commands in order to suppress aeroelastic phenomena such as flutter. It does provide the
following functions:

» Static command of control surfaces positions

» Excitation of control surfaces, singly or in combination

* Monitoring of control surface positions and error signals, actuator hydraulic pressures,

and hinge moments
» 'Trip’ System control for wind-tunnel safety

436

DIGITAL CONTROL OF WIND-TUNNEL MODELS
USING LabVIEW

by

Sherwood T. Hoadley

LaRC Computer Systems Technical Committee Workshop
on

The Role of Computers in LaRC R&D
June 15-16, 1994

OBJECTIVE

DEMONSTRATE THE USE OF LABVIEW®

FOR
INTERACTIVE ANIMATED
DISPLAY OF ACQUIRED EXPERIMENTAL DATA
AND
REAL-TIME CONTROL OF WIND-TUNNEL MODELS

437

-

TABLE TOPWIND TUNNEL FACILITY
FLUTTER RESEARCH AND EXPERIMENT DEVICE

.

~

. CONTRACTION
v FAN
&

—»
MOTOR

WIND TUNNEL FACILITY

FLUTTER RESEARCH AND EXPERIMENT DEVICE
WIND

TUNNEL
ODEL

_«f"/"’/'—'—— \—\/\/ h\\\\
N

TEST SECTION
SCREEN (6" x 6" CROSS-SECTION)

CEILING MOUNTING FOR MODELS

LIMITS:
VELOCITY 1500 inches /second
MACH J12

J

438

~)
BLOCK DIAGRAM OF CLOSED LOOP SYSTEM

Voltage Applied
to Piezoelectric
Actuators

Strain Gage

Operational Amplifier

Amplifier

DIGITAL CONTROL COMPONENTS

IMPLICIT CONTROLLER
DYNAMICS

ZERO ONE
le—1 ORDER TIME LAW _y
STEP
HOLD I DELAY I

DIGITAL CONTROL SOFTWARE SCHEMATIC

TIME-SHARE SYSTEM
LabVIEW

USER/CONTROLLER DATA TRANSFER)4—" .
INTERFACE (

‘ GNFORMATION DISPLAY h__

REAL-TIME SYSTEM
(DEDICATED PROCESSOR - DSP)

DMA AND DIGITAL
IANALOG
CONVERTERS

FLUTTER
SUPPRESSION

Macintosh operating o;stom (no fixed rate)
e Roai-time System (200 hz)

439

LabVIEW FLUTTER SUPPRESSION CONTROLLER)

VIRTUAL INSTRUMENT FRONT PANEL
D‘EMONSTRATlON CONTROLLER

e Excitation F1ﬂ
Control Law | Galn |
Elo.a54 | [J-0.075 | [lo.ooo |][*l0.0031 |
[Fo.os0 | [lo.g9s | [Ho.000 |]{0.0001 |
Actuator
i [Zlo.oo0 | [{o.000 | [Fo.000 }}{-{0.0000 Gain +
* e o | {' -&- -'.-
W‘"-;'-j" - - - ﬂ 1.0 K)‘_’Lr-
< [(-13.5301 [-23.350 | [Zlo.000] 1[>[1.0000

+

Command

Bias

-10.-5.0 0.0 5.0 10.0

J

S

OPEN AND CLOSED LOOP STRAIN RESPONSE h
TO WIND TUNNEL TURBULENCE
Wind Tunnel Velocity 575 inches / second
/ 08y T - Open Loop
i |) i Closed Loop
R T T
o (i R L
Strain o, | Wil e O e "“';E'd'i'l“li':i'?':i' i ,f'!’.!
. ha: 1 I HIR f L
(volts) VR R A R L
o0 | I TN Ak e AT ALY {
' - i k
" U |
-.04 —
0 1 2 3 4
5 Time (seconds)
o

440

(" LabVIEW DATA LOGGER
VIRTUAL INSTRUMENT FRONT PANEL

Number of
Initialize Serial Thermocouples

Port & HYDRA

Delay Between E_z-——-l

Samples, sec.

Part :

! MODEM. I Sensor 4 | Sensor 3 s
68.00) ensor 1
Pathname [I 67.80 67.90

BMGQ HD:Desktop Sensor 5 Sensor 2

Folder:
68.10
Filename v ' 67.80
‘IDatalog.06/16/ N . ’ i

Read Data \

Save Data X
Stream .

@] 67.60

Open New Sensor 6
Data Fiie

.

Hyodra Oata Logger DAQ.950
Waednesday, June 15, 1994 5:05 PM

Block Diagram
NI s
I QT30
initialize Seris [Strip Chart
Port & HYDRA Fllename
: Gis] Pathname

Number of
Thermocouple:

fort
o

Oelay
Betwesn
Samples, sec.

Open New Dats FINITEY

441

BACT Digital Controller System

Passive Digital Controller
(No Feedback)

Computer
override

lectronic|
 Interface:

900 00 88 8

LabVIEW [
Program §

Actuator
Commands

Sensor
Signals

[e emmos |
EECIEENEDNN
Manual
override

Active Digital Controller

Control

SUN-1
Workstation Electron|

(" LabVIEW PASSIVE DIGITAL CONTROLLER & DATA ACQUISITIOIQT
» VIRTUAL INSTRUMENT FRONT PANEL _

Command BIAS Positions

Sotu Excitation %

“;;
_ M'g}:,t_;g Amplde: |
:m*«f e

442

356110 loosg N95- 16473

Electronic Engineering Notebook: A Software Environment /D
For Research Execution, Documentation, and Dissemination .

by Dan Moerder

The Electronic Engineering Notebook (EEN) is a byproduct of several years of
collaborative work between LaRC and Martin Marietta Astronautics Group. The EEN
consists of a free-form research notebook, implemented in a commercial package for
distributed hypermedia, which includes utilities for graphics capture, formatting and
display of LaTex constructs, and interfaces to the host operating system. The latter
capability consists of an informal Computer-Aided Software Engineering (CASE) tool,
and a means to associate executable scripts with source objects. The EEN runs on Sun
and HP workstations.

The EEN, in day-to-day use, can be used in much the same manner as the sort of research
notes most of us keep during development of our projects. Graphs can be pasted in,
equations can be entered via LaTex, and so on. In addition, the fact that the notebook is
hypermedia permits easy management of "context": e.g. derivations and data can contain
easily formed links to other supporting derivations and data. The CASE tool also permits
development and maintenance of source code directly in the notebook, with access to its
derivations and data.

The EEN is currently in day-to-day use in the Guidance Group of the Guidance and
Control Branch, and at Martin Marietta Astronautics Group.

443

wand® o

aJe[i9plaowidiapiaow
19pIao ueqg

#661 aunp 9}
doys)iom 21589 OHeT

yooqaloN buriosuibug 21u01108|g

444

uard® o

)OOQa]ON 8y} JO Snjels pue Ajjiqejieae ssnasidg
ain)des abpajmouy yasieasal o} sayoseoidde

jeuoniped) 18A0 UoljeluUsWNIop paseq-}ooqaloN
JO sabejueapesip pue sabejueape ajeisnj||

)}00QqaJON 8y}
JO suoneodde pajensuowsp pue saijljiqeded aqrosaqg

buyolig jo asodindg

445

wardd e

joo} 3SVD . Aydiessal, , Jewou], -
sjoid qeney b°e ‘sabew x jo buised pue ainjde) —

a)oed
joquifs pue xa]e7 eiA Aejdsip pue bujipa uonenbsy -

uoneuwoyul
JO ,,Syunyd,, jjews ussmiaq syuj| }xauadAy Ay ayj uQ -

uonew.ioyul ,, Ajniun,, 10§ painjonis —

“""}1OM S,WEd)] |I1e3Sal
e Jo sjinsaJ buibeuew 1oy }as|oo) eipawiadAy painqlisig

¢H00Qa)JON 3y} Si 1eym

446

waredd e

5 — ("umoys 3, udJe eyl IPIND) Y} JO SUOTIIISQNS O] PaUI[e
: 51001 dopysaq 01 9pInD),, Y UT SIWBJJ £ 9SAY) UO SWAN A])

poITes renuew e Suronposd Jo ySel Y1 O PR8I A58 SUNYD
9Sparmoun oy “eseqejep SN ddwexs uw jo uonsod sy uf sufH TN Aaid ey A 2ars STT] § SupH 1N g REYIG 3Avs AN QWPH ION 434 19831 1P 248 AT
-aseqeyep eipawaadAy sjdwexy *1-] aandig somse: N1 B o .
SULIOJ MPAdS)) '€ o spnuoy qdusg) p © 7] uonjoun ‘o
puRY)) Sfdurexy -7 °© J019[NOY) S W) sinsas Bondi ¢ o
suonezado oseg '] o swp Supoduy ¢ o suone[nofe)) dumexy -7 o
diof 0100 JWOH] 1XIN AdL{ 1353y 11X IA¥G JLF] sdwan oydurexy -7 o suonEsado aseg | o
O suonesado asvg °| ©
| R b “jno .‘_—E EI g sae
~dnod 5 unf s ponaum) Xp W1 1c8'2T°¢ M) -modds ajapaos pus yoe sydn8 swauneng Jo ApuTA ¥ “PIp-puwy ¥ 1) vogoumy
Yoo 5397 [1L8'91°€ “aamy] nok sdjagq sepoafe) . Ao nok sof sudesn x|, e sowrope) .
' sxydesn) ap
Jepuape) dojyaq 3y Jaydeur) doyyeaq g Jojmnofe)) doyysaqy sty
10§ [suO S1ereda% ¥ AW PROYS :
aAnquod o} mox sjdoad et psjo0y, Bump) i saydey;) 00] Bump) :g 49y ooy B :] sdey)
Sumous uo penusouod pinos | € MM [Lgv1'¢ ‘amemv] o gool Buenitidwip] |gscor
M 'CT'E W
Yo [[(8°ST'E WA} eycharexs sy wow may e |
-—m.-O—B B-H—QES 51 sxjdeany paounoAyuri i (/8¢1°€ ‘wady] ~ dsicf{ diaH 0100 WO IXIN AL 1353Y 1XT JAG FAw]
ARMIP | [L8H1°E MWV
vees w ., o s
simosny soydvagy syeswdos o ipoo8 Bupjoo] [(g'€T'E v0f] g .
Q) By 3m pjnoyg :ones]} [U0) aping) sjoo, uo sauwo)) i z
ydamn °g ¢
sprunno)®) LR
dsidIoH 0100 IWOH 1IN A3l RPY X 2ang 2dn-T] -
*a0t]Jo Mok
w sanonpoad asow sj aq noA diog
1 awv] & ueo Aoy “seqpdog, 0oL doppag
* wmon | ™ £ 3 %1 0 moy sureydxd aping) Y|,
dna 151001 sjoo, dojymq o) apinn
o s | Moy &j— dPH 0100 SWOH PON Al 1989y 1(xg avg s3]
—] apm N
zuna amea | Sunapmp jonpoid®
J fastind ey] dopyea(] ® Burmas)) «
AU
1 U 900y dopysa(q Sus() .
TABM 1 XM (paweq-a2yndiucs) sjwsoin g,
1PAS Inpayog uohonpold ennvpy 8 30910 dOYYSS(XL -
o doveaq g (-919 ‘s1oded [BOTUY3] ‘sjuswNOOp onpoid
FIOOL O % PN © *SIOIOAUT ‘SWHIO] ‘AInjeIaT] Sunaysew
S{ENUEEN pus sapinn . N -
adeogpue] ® syudwndop s Auedwod 9 sox9put
P . I put
1o0qPay vogmuawnooq jonporg [18U} WYy [9A9[-J9yS3ry € woy Yury)

a|dwexg Juswnaoq eipauliodAH

447

ward® e

‘JUBLWUOIIAUT

Juswabeueyy ssa20.d 8y} - woalsAs bulvauibus
ajqesnad ujliepy e Jo juauoduw oo e si oOoqaJoN —

‘JudWaAjoAUl
Aajbue7 yum ‘uoddns gvy| pue gvyd ensiiep uiey
Japun ‘Ajuewnd ‘pajquiasse usaq aaey sjusuodw o) —

'sjusuodwod ajqeyndaxa yjim ,,Jusawinoop,,
e wJoj jje wayj} buiuuni 104 Aisuiyosew pue ‘sapod
sisAjeue ‘soiydeib ‘sajou bunyiom sapnjoul ‘ebpamouf —

‘S9p02 pue abpajmou) 0] SSaIoe
wes) Buroueyue ‘paseys ale seseqelep pajnqiiisiqg —

SUOIBIS)YI0M JH PUB NNS 10 81eM}JOS S 10D UO paseg —

uoilejuaws|duif ooqgajoN

448

Wared® e

daded v bunim -

sjuaswiiadxg buioqg -

ejeq buibeueyy -

uoIIN|osS 10j swa|qoid dn buies -
apoD bunrm -

bujpooq -

suoijealsqg buipioossy —

N33 8y} ul syse] yosieasay

449

ward® o

Joded e allim ~

$a1n}onus [04)u09 [ewijdo pajedijdwod aiow 0} pud)xy — |
sosed }so) dojana(g -
NV&4.1H04 ul uonjejlussaidol azijeay -

a1emyos uonezjwundo
Jajaweled ul uonejuasaidal 10j uonelou ysiqelsy —

450

poAjoS
8q 0] swajqoid j043uo9 [ewiydo jo ssejd ajdwis auna(q -

sal140)o0flel) aouaivjol buijeiosuab
40J apo? uoineziwndo A10108fel) e jo Juswdojanaqg :ysej

Al10]SIH ase)

eBewsded | ® o

sogpenRuLcedi 1@ o SITAISD LVIRIOJD edwospunid

“TOSdN W
Sjurensuod jo uogejuasaidos oy Jo Isneaq ore Aoty s passaidxa are (£°g) 181 AON
iR ®)

82 's3gQ uerd

2y Surpeds pue ‘103004 d 9 JO JUIWS[R UB B UonBIN A10129(en a1 Sunean

£q own 9315 0) poze1auas 9q UBd STYL "uonesnp Krun Ym pasod st warqosd

241 J8Y) OS[E 210N "91BIS B SB UONOUNJ 150D I YSTGBIS? O ST SUORIUNJ 1500 [BISaut
Buneon 10§ 2INSBAW SNOTAQO Y], "ULOF JAKIA UT pasod st wdqord ayj Jep AON

‘sjurod uoneZNAIISTP

91 18 pasodun 318 Ssjurensuod £10)09(e1) K[uo-2183S Y} IATYM ‘SIATBALIP

918S 19938 S[ONUOD Y], "STEAIAUT UONBZIIIIISIP JO JOLIAJUT) I8 PIAJB[NO[BD
QI8 SIATIBALISP 9)B)S YOIyM U UONBZNIOSTP S1els B Juisn aq [1,9m 181 198) o1}
0} 9np S1 SHUTBNSUOD 2y} Jo dn Suminds sty L Uy 1=(syurensuod Kyrenbaut Joy

Iowwbejyom.
1 enaben0 —- (Iafial wur] “Asn Ahv
San (45K bop (i wvm) "Wy | wammbejudtag 8o *

sjurensuod Kyenbaur 918)s pue By 1=1 i}

| |pum, A@V
10303 3900 —- (|] Wipan an (4 W W bop (o {ws) T,
| ommbe jwliog | s8irn

Sjuregsuod Ajenbaut [0HU0D/ABIS SY) PUB

| [mowmba}
eAu.u_Lch AMV
{onmbejran o

|{mononbaj;
i"-_ilu Aqv
{wwchs |ul g} Sy

0) 199(qns

g (£)
[wumbs|wdva| $an

aym
{musmbejulog ey ANV

ZIWTUTW 0}

ey {)

eyl mow

[} jungipm,
{masste jmingjsf oy,

QUTWLINR “SUTAJOS UT PAISAINUT 23, 9M 8y} Wo[qord Sy SAe)S Iwely STY Y,

SMLOOWIID . |0OL NVHINOS o POL N -
—tuerntDs
va Az,a:hn?,a,ev,\nﬂ
A.hv 1 W 1 w 0 \Ahc_:ﬁ: W AR»H&:\ 3 AA:::QV
on 1>130 .-Ah.::mv S AR,S\,HVS. S ,.A:::Qv
(s) 0= (d‘z‘ z)
(¥) dnz)f=1z
(e) (=, (z=,2
(2) Aka_s.o.ﬁﬁ =L
22d
(1) INER*EX0L
! wel 2T
udl 3 oF

wdjqoad jonuod ewndo aseqd-a3uls jo JudwI)els

HON JOVIN I®
amxo®
SYLYND
Hia s1n®
XL YD

451

ebeuysd.edd | ® o

ooapewuLcl edh 1B o STIAISD LVWHOID edwepuBID JFHONWD SULOIOG 19D o [COLNVHIHOL o 1001 N - iNO4D
T iGN SMODUM X O] YOBIY o PIEOQUI0 SMODUA X W04 13 o | HOW JOVIN IO
amx®
aYLLYND
Hia sILN®
Hwambelym Xo1\@®
—\tr:i..Irz‘gl_.sﬂ.llcylux.-lin-lr_.-lnﬂ“ AN#V
(e
§8 paSuBlIB I8 90D STY) UT SIQBLIBA 313 YL
R D
sB passaudxa ST 1500 9} ‘9J0U [BUTJ B SY
"SIurRASU0D tuy(~+Zv+wc*z ST (01) 184 JION
({mowmbe| pum, . . .
Ly ..I.;i.i.i,..«tiﬂ..,__,ﬂ_..il__d AN: TR _+../~.H .Mﬁ v.& e Mﬁ .MH L—.:\ MH_ = L.k
w:_tl..c.)dun._ﬂ-_».h:_l_d AA:V
f.ﬂ..n:lﬁ.lq”u“."‘l h“-& .4.-_':|_.5
:A.Il_.sdfﬁﬂmmm_’_"lm Aﬁﬂv ARa‘—AT./.an.‘NVQ = Nc
WO 0} PAIBUALRIUOD A8 (£°9) SIUTBHSUOS Ajenbaur oy, —
1l v W e:*N w Yuf untu v
sl (" : ("
“ulzhﬂ-“lg : H :
SUTBISUCD Ac.: MA.E:J: W Mt W Q—A:.::QV _ \w
Ayenbo oy w0 0} () SOTWRUAP WRISKS Y] YILM PAJBUIIBILOD PUB Wrup) > Mo > =A=.:=m)
(vt pom, ; : : :
...IAH._...__....WUN..U” (8 _Ah_::u.v S 5 A:::Qv %
$8 PaILISAI 9I8 SUOHTIPUOD ATepunoq Y|
(6) 0= _ _

‘s, pue §,0) 9y Sumenomd 10§ 51801 9y

apisino pautyep a1e K9y} douts ‘Ajaa1ssasSFe spunoq Jamop pue 1addn g Sutsn Jo uonou ap ‘
s 9[qELIOJWOD A[TBI0) 10U 358 9p “d JO §,1 'S X 3y} JO suonduny 918 Hpuwe'o (8) 0=(d*NzTz)

10y spunoq Jamof pue roddn a3y} 18y) Aem B yoNs Ut EoBoa oy Sutsod J0u 218 34 JeY) AION

oo €t A; Yutoy=o(.R.E::QV 3 .sm S .R:.::tv
[IPREIRNER itierab e e v - 4
{sowmbel oot

8 pasSus.re e sjurensuod Ajrmenbaur syers o ‘Arepung

TIOND

452

todinotes31

This frame summarizes the details needed to run the single-phase direct NLP
shooting code. The code uses NPSOL to minimize a cost function subject to plant
dynamics, boundary conditions, and miscellaneous user-specified inequality
constraints. Note that, for this version of the code, no interior boundary conditions,

e.g. staging, are permitted. In addition, the problem is assumed to be cast in Meyer
form, with unity duration. The problem statement is

o Problem Statement Here

and its representation in the code is laid out here:

- Derivation Here...

In order to run the code, the user supplies a main routine, and five subroutines: cost,
boundary conditions, RHS of the plant ODE’s, state inequality constraints, and
control inequatlity constraints. Templates for these routines are given below:

Template for the main routine, madsl .f

Template for cdsl.f (Cost Function)

Template for bcdsl.f (Boundary Conditions)

Template for pltdsl.f (RHS of plant ODEs)

Template for scndsl f (State Inequality Constraints)
Template for ccndsl.f (State/Control Inequality Constraints)

NFSOL
/
° cf/!dsu \ npeptn.f

edsl f o dsicon.t

bedsl f
l o dstirajf
o dsttrajf ° dsftrajf
° OdedS'H ok
o cindsl.f ° sindsl.f
l © mpdsts ok
° §1.f ok
@LaTeX mp/d scndsl.f pldsl.f *NPSO
@UTILS DIR cendel
@MATLAB
@XWD
@! MAGE MGR .
@FONT o M-File Tool °FORTRANTool o Get Back to Title @MORE

453

Set up the code structure

-dsttraj.f -dsttraj.f

l

-cinds1.f -sindsi.f

=TS

- dsttraj.f

@ad1
A
° c;tdsm' l npoptn.f
cdsl.f -dsicon.f

- odeds1.f ox

\

454

l, > mpds1.f ok
e mpds1.f ox
scndsl.f pltds1.f

cendsl.f
@LaTeX
@UTILS DIR
@MATLAB
@XWD
@| MAGE MGR * @Pazent
@FONT o M-Flle Tool °FORTRANTool o Get Back to Title @MORE

@Top of File

° @EXECUTE
SCRIPT
@ A »
This is a tempiate tor mads.f, which calls NPSOL for doing
single-phase discretized direct NLP. Here’s a map of the code:

c L] »:s.'«ﬁ?f'\sg%m!
program madsl [‘Jp\m
implicit double precision(a-h, o-z) :é?égﬁﬁ:

o=]3". nisl gplitss

°C***Declarations and User-Defined Parameters

@ @ @ @
NPLNTP NROWA maxpval maxwkp
NUP NROWJ maxwk pgint
NROWR hu nis
pint piy
nbc
v nparms

cC***User Defines Logic for getting plant
Cc parameters and initial state and
04 control guess

@ @ @ @ @ @

NCNLN NROWA maxpval ndint arms parms=plant parameters

NONLIN NROWS maxwk pis 1; x=initial guess for state,control history and
NCON NROW nu niy parameters.

N MAXWKP npint

L WORK nbe cdst.f

LIWORK nparms \: beds1.f

°oC***Execute NPSOL pltds1.f

- makefile @ ccnds1.f
=solution? scnds1.f

=final value of constraint vector.

cC***User Defines logic to save results

C

stop o ione this Framesot!

end * @Parent

455

Cx**Sat NPSOL execution parameters

° @EXECUTE
SCRIPT

@Calculate derivatives numerically

call npoptn (’'derivative level 0’)
call npoptn(’'difference interval .0000001")

c***Diagnostic
call npoptn(’'print level 21')

@Hardwired interval for numerical
differentiation. If this isn’t used,
NPSOL will waste time figuring this out
on a case-by-case basis.

* @Parent

456

A-(o

Last file export on: 28 January 94 at 10:49:57, current version

o Info

o Info

o Info

o Info

o Info

o Info

o Info

o Info

o Info

o Info

o Info

o Info

o Info

o Info

* Top frame of tree to write: todi0001a2

*File: /moerder/usrl/moerder/TODI-II/ds1/mads1.f

* Add blank line between items: yes

* Follow tree items linking to other framesets: no

* Follow annotation items linking within the frameset: no
* Time version number:

* Preserve relative indentation of items: no

* Template frame:

* Remove 1st character of each line during export: no

* Program to execute script: shell script

* Toggle text 1, family: Times
* Toggle text 1, size: 16
* Toggle text 2, family: Courier

* Toggle text 2, size: 14

o This script initially cloned from *shoot0019a’ 27 December 93 10:33:32

457

®* @Parent

@Top of startup script

cd /moerder/usr1/moerder/TODI-Il/fighter

£77 -O2 -0 mads1 madsl.f cdsl.o bcdsl.o pltdsl.o cecndsl.o scndsl.o \
getprm.o ficof.o \
./dsl/dslcon.o \
../ds1/cstdsl.o \
../dsl/dsltraj.o \
../ds1l/odedsl.o \
../dsl/cindsl.o \
../ds1/sindsl.0 \
../ds1/mpdsl.o \
-Inpsol -llinpackd

® @Parent

458

obowysdedd 1 ® o

sogpenwwiod-edi1® » SIIALD LVIRIOAD edwospund

suonenbs 3y -

—erg®y
[{wormube jpom,
Utvh b
{woymnbe jvBomjotrvny
(o0

[ensn oy Aq ueard st ‘b ‘ainssard onweukq

1{wcqrende jpun,
HEIF gl e bt
temmabe jorboqpefnp,

£q uoif st g 21nje13dw?) Y AIYM

{ | morenbs jpun,
Sogrg9s0 DO
{worrente jmfoq)ednp

sI punos jo paedg

11vowenbe) prey,
A (el 1of | (e
(Lo d il L lg N

1 {wowonte jpan,
(D)) (Aeqr (o1~ Unpuk
{vayrnbe juteq et n,

{ twormabe Jpew,
AATNST 11O
(smmabe)m@eplofrm

s1 Ansuap oudydsowns uym

(worrenbe juBeq)elarp

{ivoymebe jpun,

{rrmnbs jobomleton,
{1womabe e,
v s{ 1) 00
[sorrenbe juboa] o8 mp

{{wormabe [pen,

- JRING-L 14100

oonenbs jwtea)¥np\
918 uonjow Jo

s1591) S, pemA9g suey woiy paseydesed [apows 1810118 9y) In0 SAB] jOU STY],

SfiLL 01 0%g 19D 1001 NYHLHOS »

1004 N 1INOID

(6)
(8)
(2)

(9

(¥
(¢
(@)

()

JHOWD -
N\NDQ =b

=f
Zi%v_ww = (y)o
9/A89H0°02 = (y)o
w(e0)S = (0

((4)<2)"(0) + 42(Ao) + '(Av) = A

b
6Ze1

82 = (y)d
Lewa=1x
a
L —~u)l=-=4L
(L 900 :VQ L

Lusa=y

Lush EA =a
! laQI.EI.

DIROGHO SMODUIM X Of YOBHY « PAROQUI0 SMODUM X WY 100 o | YO FOVIID

amx®
avuvyne
Hia sIAN®
Xo10D

SIS34 1, SUBH Wolj 13141y

459

° @EXECUTE

SCRIPT

o Miscellaneous Constants

@These are constants for the Hans F15

° g
y model

° az
°af
o acd0

° bed0

- Drag Model

o ak

° bk
° a8

® @Parent

460

° @EXECUTE
SCRIPT

. 29821847445e-1

7368651246

+1.37368651246
-4.57116286752
+5.72789877344
-3.25219000620
+7.29821847445e-1

461

® @Parent

eBwwisdedf 1@ o

20QPeNsuULoedd @ - STIALSE LYMi0ID edespuni® JHOND OPLL 01 OB 19D - I00L NVHLHOd o 100L i - iNOI®
T L20aN0 SWODUMA X O YOBHY « PIEOGU0 SMODUMA X W04 130 o | HOW JOVM .M
amx
SV UVND
HIa SWLND
XoLD
‘uorssardxa Sei(g 9yt Jo uondaOK Y YILM ‘PIAJOSII Aq ABY [3pow SUBH
M SIDIJUOD [[B 219y 958D 9 0) spuodsaliod 1531 3y 0) adojaaua Y3y oy,
suep ysuiebe buyyaay?) 10j 9po) -
98,
0 auwnBas Jybiyj 1940 G-1 ¥99YD 0} 90D - HMIS Sy} Aeidsip 0} 9poJ -

N0 2J2yM JUTWIINAP 0} [powr SuBH IsuteSe Sun{oayd mou w] "SUOKIPUOD JO

28ue1 molreu £194 & Ut 3do0x2 pagIoAu0d 3, usey ssAuIsnq TOSIN YL ‘AfreanieN ‘sfopow Seip pue ISTUY) Y} JO JOIYD B S 919H "INC JIOM 0] WIS), USIOP STy,

ajdwexa sjy} 10j Aid pue 70SdN Buisn apo) -

{{aotawesbe{pusy
[ISSTIEINT LH

*95B S1Y) UT ‘JOJOB] PBO[puB A UDAIS © JO] [= u
(€) * 0= 4
0] 109[qns
@) 0=(a'y9)q - (a'y)L
avunudre = (y)_a
Sutatos (1 anewde = (y),.a

£q adopaaua 9y Jo jrey A[y3no1 193 am ‘uondwinsse STy 0 JUBNSIN XIAUOD
s1 2dojoaua a3 J8t Sutwnsse w, *dn sTyy Sumies Ul [opow yeome JySy
iy Joj 2doraaua JySiyy v Sunjesouad Joj SUOTBINOTED AU IO SAB] 40U STYL
suonjejnaje) adopaug 14314

462

FJHOWN® L oPeg 10D « IPOL NVHIHOID o 100L OI-ND -

cogpeuRuLoedi 1@ o SIIAISD LVIRIOJD eduospuwd
gpenewIos edi 1 ® A 4

INOI®

“DIROGTHD SMODUIM X O} (OB « PIROQGUO SMODUIM X 0L j35) o | HOW JOVIN IO

amx®

avuvne
g sUIN®

XoL% D

JuwS9s j0QuUOd U0 YILA qUIT[O-03-WN-UTIA «

~-Busjooys ult
ssanb iUl se saje}sod xoidde asn ()

---Asea Jadns -- G1-4 Adojs 10) uonouny xosdde aje}sod (g)-
‘sueiqooel Aiessaoau ay) a1ealo pue NYHIHOL dwos og (2) -
‘aAes pue ejep G1-4 ,,Adoys,, ay} puy o} }diios qejie (1)-

ii ¥sip e paddoup sey 3oHOID ases uj }snl sbujy} asayj jo yoea oq

jii uoinjos G1-4 s,ueq puy o} moH (pue) wajqoid sjy} 104 Aielq -

g, nddeysod

463

sogpeusuLodedi) @ - STIAISD LVIMIOSD edeospumi®

JHOW® OBLL 01 PRE 100D - 1001 NVHLHOAD - 1001 SH-ND - INOJ®

HOW JOVN 1O
amxo
avuvyne
Hia SULND
XL 1D

:@
“pae0gdo SMOPUIA X 01 YOBIY o PIBOGOYI SMODUI X W0JJ 13D o

IYBY/M-IAOL Ut
yep'y_dojs nx pue jep-oelpy”dojs nx
Ut pa10)s re SI1J Funnsar 3y pue 'SP PIPI N0

jij UeIO] W pABINOTED B surIqooel A101009(en ayy XN

1Y3Y/I-IAOL -- A103132mp Ul

1epdofs 0X U PoIOIS ST I[NS3I 3y} PUB “SIYI PIP Y'Q ourey snotaaud ayy uo

1duos qepEW (1) Y7 UI JO SJBD UL} ST IA0QE 94 JO [TV

- Keme 03 1, UOM Jey] ysel B aYI] -- UONEILL] " IO

‘Aem TBNSN Y] UT STY} JOJ 1091100 [[Im |
*9p0d Aw £q popadu §B]8]S WM YY) IARY JOU SIOP BIBP S UB(] 1583 J0U Inq IS8

..... 113D

‘STiY) 1091100 0] WSy Jutodprs asn [1 ‘sjutod apou ay3 Je Ing
sjutodpruz 913 18 [O1UOD Y} IABY JOU SIOP BIBP S, UB(IBY) JIQIILAI ISNW M JXIN

iii a1y aa0qe
o ut souT| g1 IS8 93 ST 1843 (889Z: 19ST) UT PUNOJ ST JUBM S BIED I KemAuy

871 = suered 9315 ¢ + 5,299 9 + (sjutodprw 18 readde S[110) GT + SABIS G 4 SIPOU (T

‘suresed [osdu

871 SBY UONIN[OS YB3 SNy} ()X UT pUNoj 0U0d [BNIO8 Iy} Juyap Jeyy) surered
2213 ¢ pus ‘jo[uod (Asuoyd) 1 *$9J8IS § ‘SUOTIPUOD ATBPUNOQ § ‘SIPOU (T SBY UNJ
youy (AZ19u9 [RUTWIA) JUAIFJTP B YIIM YI8) SWIqOId [BNPIATPUT [Z SBY I[Y STYL

iii 18P TZ”0008€0007?/+31y3y~do[s/II-[QQ.L/39pIo0w/ [3S1/Iap120Wi/ UT punoy aq
UBd $os [0NU0D 3UO A Wqosd qUITTDORWRUTW S T-J) O UOTIN[OS Sue(

LLuddeysod

464

@Top of File

° @EXECUTE
SCRIPT

° $Header

°$Introduction

°%Single-Impulse Problem Statement QFIG 4

°%$Results
QFIG 9

°%$Two—Impulse Problem Statement

°$Figures and Tables

°% Bibliography

\end {document }

®* @Parent

465

$Single—-Impulse Problem Statement

° @EXECUTE
SCRIPT

\section{Vehicle Model and Mission Description}

°% Vehicle Model

°% Mission Parameters

°% Constraints

°% Optimization Formulation

®* @Parent

466

independent variable

independent variable

o Link to

m
S
=
(S
g
o
¥
-1
8
8
<
ke
2
:
T
z
s
$53 i
-
123835
PE®&8a6

467

ward® e

~abueyaiadjul AbBojouyoa} 10} a|qeionej s| Siy] -

‘suonpmsul

JlWwapeoe 0} 991y Sasudd|| [|ny pue ‘abieyd Jo 884f Sasuadl| Ajuo-pesl

anquysip |im Aajbue] pue ujuepw wouj suonsabbns juajsisiad pue
pnoj 0] asuodsai uj {(swajsAs abpajmou)|) I0pusA 81em}os JSOY Y] e

"$19SN YSYN-UOU 0} Wd)sAs mau ayj} jo uonnqujsip
104 Juswoalbe bujsuadi| }s02-ou e padojorap sey uiep -

‘Bupuny gv4i 1opun A}jjiqesn 10} ,umop
paquinp,, buisq yjoq - arin2 bujuies| awosa|qnol) A1dA wioly paisyns
()JOOQaJON 1IN0 pUB) JUBWUOIIAUT JudWwdbeuepy SSa20.id UIJIEIN e

468

‘uoisinai Jofew Yy sy ojul bulob si 3o0oqajou ‘adejidjul
u1 sebueyd abie| uj pajnsal aAey sjuswwod pue buysa] -

-1ea/ e Jsowje 10) dnoir) asuepiny s.g09
Aq uo pajuswwod pue pajsa} (Ajjeajols) usaq sey WalsAs JO0qaloN e

snjels ualInd

warj® o

"0)0 ‘sowdp aAll dn)as ‘auljjjo j1ejep aiow uj
sy} ssnosip A|pejb ||im 18pId0oyy "SUOIIBISHIOM dH 10 UnS Ylm
sJayoieasal Aojbue] 0] ajqejiene A[jualind sj OOqolON dY] e

-sasua9l| b9 ‘panjosal Bujeq aie
abpajmouy 8.1nded-¥00qajou 0 UonNQIISIP Yim Sannoiid «

‘ "UOISIASJ B3 Y}IM Salnjesj buneliill
JOMad} sey pue ‘W.Joy Jualind s ul [njasn AidA Si JOOqOJON dY [e

“wnynaiiind ubjsap
, Aseundiosipninw Aysisaaiun pasodoud e ul paujjaseq bureq ‘puy -
(W04 JNd S ul) uieyy Je siesuibus o Alybnos Aq puy -
Hye7 e sisyoueasal G Aq asn Ajiep ui st) -

"Swea)
yoieasal Jo yiom ay) aziuebio pue ainyded Saop YOOqaION 8Y] e

Aewwng

469

IDEAS2 Computer Aided Engineering Software
by Pat Troutman

IDEAS? is a multidisciplinary Computer Aided Engineering (CAE) software tool that
was developed for systems engineering and integration analysis of spacecraft. The name
IDEAS? was derived from the two software packages that were integrated to form the
tool. Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) was a NASA
spacecraft-specific analysis software tool that was combined with a commercially
available product called Integrated Design Engineering Analysis Software (I-DEAS). I-
DEAS is a Structural Dynamics Research Corporation (SDRC) product that provided
capabilities lacking in NASA IDEAS such as solid and finite element modeling, thermal
analysis and advanced graphics.

IDEAS? utilizes a common database structure which facilitates the integrated flow of
data between the various analysis modules. All analysis is based on information derived
from a three dimensional solid math model that is created in the commercial solid
modeling program. The combination facilitates traceability and ensures all analysis is
based on the same information. Once the model has been generated and stored in the
common database, a wide range of analysis can be performed. IDEAS?2 has several
orbital dynamics modules that can simulate/analyze spacecraft characteristics such as
controllability in the presence of dynamic operations (solar array articulation, robotic
arms, etc.), orbit lifetime/reboost requirements and micro gravity environment. Structural
analysis capabilities are also available ranging from finite element modeling to forced
response analysis. The impact of the local spacecraft environment can also be evaluated

by utilizing the IDEAS? thermal and plume impingement analysis capabilities.

The common database and integrated analysis environment allow IDEAS? to be used
both for high level short term studies and large program systems integration. Several
NASA centers utilize the software for advanced concept analysis dealing with space
platforms or Lunar/Mars exploration. The Space Station Freedom program has
established IDEAS? as its primary Level II integration software package. IDEAS?
models are commonly used to disseminate the latest Freedom element weights and
configuration updates.IDEAS? has recently been upgraded to allow the entire software
package to be ported to a UNIX workstation along with a new graphical user interface.
This will allow smaller organizations to utilize the IDEAS? capability without a
significant investment in computer hardware.

IDEAS? was initially developed from 1985 to 1986 and has continuously been enhanced
to include the most up to date analysis tools and graphics interfaces

470

~ uosId sydaouoy) 1 swaysAs aovdg DYyvy N

youeig siosuas ¥ yerdadeds
uewnnoij jed

21em}}os

Buiseauibug paply J191ndwio)

_svaal

471

ﬁl uoisin(q sydasuoy) 1 swaysAg aovdg Hyvy

09pIA Uone|nwIS
sisAleuy Svaal -

suoloalig aining
/ pauleaT suossa] -

sanlqede) Jualing -

punoibyoeqg Sv3al -

SUuipinO

472

~ uojsiai(g spdasuo)) 3 suiaysAs aovdg Hyvy

uonelodio?) Yyospesay solweuAqg [einonis ,

N

473

\n‘ uoisiaiq &QQSSU % swaysAg aovdg HYVT n

sisAjeue Joedw siigop |enqlo pue yuawabuidwy swnid
‘sisAjeue jewiay) ‘sisAjeue pue Hujjopow jeinjonis
‘uonje|nwis soIWeUAp [eligio apnjoul saiijiqeded sisAjeuy -

ainjonu)s aseqejep
UoWIWIOD B U] Palols SI Jey] [opowl ylew pijos jeuoisuswip
994} B W04} paALIap uoljewlojul uo paseq si sisAjeue ||y -

sisAjeue yelsaoseds .10}
padojanap sem jeyl |00} aiemyos Areujdiosipinu y -

,SV3Al S! 1leum

\@L

474

— uossialq spdaouo)) g swaysAg aavdg HYvy |

uaAld
Anautoen)

jyausdoraaa(g ug
leuoneladQO

oAl
uojpoun

475

— uostalq s1daouoy) 1 swayshs aovdg HYv7 "

aoepiaul 1osn jedjydesf mopuim X B YUMm
uone)syiom sajydess) uodyjis e uo uni o} €661 ul parepdn -

opei0jo) jo AlsiaAlun
ay)} pue Jajua) ybipyeoeds uosuyor ‘oge] Aq pasn -

/861 Ul
abBeyoed uoneibaui || [9A3] uonels aseds se pajodd|ds —

9861 01 G861 WO}
wesboud uonels asedsg ayi 10} padojanap Ajjelnu] -

AoisiH ,svaal

-

476

1OVdWI INFWNOHIANT SISATVNV TVHNLONYHLS

4

T3dOW HLVYW d-€

SOINVNAQ TVL1IgHO

7/
/

AN
. 4
N4

frasy wnpuoop by DS

Suidaaursusy

poply
Jaynduwio))

SVHUI

477

ﬁ. uosian(q sydasuon) i swaysAs aovdg HYv]

sojuieuiqg
10)8[suBl] waishsg

sojuBuAQg
SOpBlS

1weduy spgqaq
renqio

s|sAJeuy |eway L

Keyds|q indinp
Bujjepon

speo swn|d

uojBUjWBIUCY sisAjeuy jeinjonng

sisAjeuy jeuniayy / jeanjonis
Bujjepopy 1uswa|g aljuld

uswafudwy
swinjd

10jei3uUsy)

Aujiqede)

[opon [eonhjeuy

¢

swisjusyoap
sjweuAg 400 9

uopenug
sjo5uod 400 €

Ayasabolo|

epniNy WbjI4 SO TR RIR)

sisAjeuy
[elalo

sisAjpuy
$]0J)U0D

uojljuyjag wsjueyosiy
Bujjapow plios a-¢€

sSv3dil

478

sjuawannbay wnjuawuop 1ejnBuy DD

UO[)BUIULI9}OP 90UBIBI[O A£10709(8L], 0d8osH AHIV -
uoryewrsy [enyg 3urdesy] uorelyg -
uoIBMwIg oOlweBui(] 2130q0Y -
Aqede) uoryenuig uonezimpdgMouspiny) 18009 -
SISA[BUy 9WI9JIT 11qIQ -
Anqiqede) uorBUINLIaIR(] 9pNINIY [BwndQ -
UOI}BUTULIOO(] YUWUOIIAUY L}ABIABOIOIN -
sdaduwn(] 011UV 20188V] ~
(spod anbuog o112uSDUI [DJUIWIIANS Yy1m) 133y 1041u0) U020} ~
(5190 SDY) WasAg 10.JU0)) UO0ODAY -
(IuawSDUDW WNJUIWOUL [§18DYdULD WNJUBULOUL L0 apniv) D -
sonqeds) uoreNUIs Me| [013U0)) OpnNINy -
[017U00 9A1j08 pus aalssed ‘suwrsrdoad sisA[eus JOJ 9 Pue g -

sonjI[iqede)) [017U0)) pue soTweus(jjesddoeds

VSUN—

\l UojsIN|G S1desuo? eards pesuBApYy OHBT J

479

\l uojsiNg s1deauo? eards pesurApy OHBT J

.mmﬁoﬁmzdm.ﬂ pue sopoua jo uorjyemofre) - Ny, AILSVN

uo1s19AU0d gV, IMHJS 03 NVULLSVN - NOOSVN

480

sisA[eue JuanwiAo[dop/WSTUBYISN - SSVAV/SA VAV
(NV.ILSAS/uornjog [9poJA) sisA[eue asuodsod

quetsusy) ‘(GVINHINS) Surssesoad 1s0d ‘(V.IMHJIS) Uorjesouss
[opouwt JudwR[e ayruly ‘(CONOHD) UoIjeIsuss [opow pIjog - §DIp-]
sonjIiqede)) sIsA[euy SWSIUBYIIA/Soinjonalys

VSVN—

\I uoisinig s1deauoD eoeds peouBApY OHET
"UOIBUSLIO puR A11ouo0as jJetoaoeds Jo §109]J0) pue ‘SUOIJeInIJuod
rem ‘erdus joeduul ‘A319070A jo8dUil SUTATRA JOJ SJUN0IDB SPOD B,
*poedWI PIOI0o}OW JO STIQOP [B}1GI0 SpBUI-UBW 0% J08[qns jJetdsoeds Jo0J
1oeduat ou Jo uoryeayouad ou jo AJi[iqeqoad oY) s801IpaLd - IT Jodung
:s1sAeuy sLIqe([BHGI0

*JsNBYXo 19[03 NP §998LINS UO §9J8d UOTIBUIWIBIUOD
pue sojed Surjeay ‘speol aanssaad SNOdUBIULR)SUT 9} SUTULIFSP
07 JosN 9} SMO[[e 9Iem)Jos 9], ‘SoInjon)s soeds Lqredu uo JuLIly

10[Jo 8109]J0 93 JO JUSUISSOSSEB UB op1aoad o} peusdise(- JWI'TdAS
:sIsATeuy Juswadurduy sumig

- 'suolje[noed Xnjj jesy Arejoueld pue Je[og - HHYLL S[00} sIsA[eue
[einjon)s puB [BULISY} ,pI8pUR)s, 03 80BLISJU] “JUI[OPOUT S0USISJJIP
9JTUTJ 29 JUSUIS[O 9JTUIJ OLIJOUI0DS SATJORIIUI SAISUSIXH - SDIP-]
:SISA[BUY [eULIdY],

sonIiqede) sisA[euy
SLIQA(] 1eNqIQ / yuswagdurdw] sawn|d / [ewaay g,

Q

VSVN—

481

~ uoisiai(s1daouo) 19 suagshs oovds DYV'T D

sias() smopuimy lauseyiy sdqw ot

ovv/av

sujbug
Aljjeay Z ob|puj
xAuo
(uj aseyd sday 00t 1aa4 v661) 1u19UIT SAAiNl O
(inO 98BUd b661) SXYACIOIN 1Bibld € |
(1nQO eseud v661) 02€9 XVA 1enbia I
| Z oBypuj eujbug Anjeay xAug 19 1
. $0d paseq 98£/98Y 19wl G/EL
:;; awanxg Z objpul DS FA

uo1BiS YoM X1O orb/av 1S I
suofiels JIoM ODIANI 000FH 19S 8

‘SINTFLSAS

asempJieH walsAsg 19indwo) gS38S

482

Buloeyajul |NH pue aseqejep xajdwod Aq Jusawdojarsp
aitemyos [eandjeue Bulnp patadwey ale sidauibugy

TTURWHO[eAS SINPOW TESNATEUY

‘Bopjoeq
aoueuajulew e Buisnes siayjo ayj o} ybnouayy ajddir ues

Bale auo ul sabueyn -sapod sisAjeue padojanap YSYN
9y} pue aseqejep ay)] ‘@1em}os |eldoIawwod ayj} usamiaq
uoljeibojul jo aaibap ybiy e sey Ajjualind paisenbs sy3al

"BUDEH el

-SVadI
Buiurejurepy ® Buidojanag ul paulea] SUOSST

@L

~ uoisia1(sydaosuoy) 1g suiaysAs aovds Hyvy =

483

— uorstaiq sydaouoy) 1 swayshs aovds Hyv1 _ _ 2
uoljejnwis sonoqol/yup aalj wioyed ol pesn - SSYAv

solsualoeleyd Ajjigels
uonesnbByuod jeuyy pue [elul ysiiqeisd o} pasn — A3Hd 1LV

sapnune ybiy)
uoneinbuod euly pue [elliul ysijqeiss o} pasn - anyv

suoljeinbiuod
uoljels/o|unys jo [9pow p[ing 0} pasn — pPowody

"awil} S }1q10 auo uj suojjejol
aalBap g om} ybnoay) uonels aoseds ayy jo abels Ajies ue
ay} ajejol ued SWH NNYS auyl teyl fjuap ysel sisAjeuy

oapIA sisAjeuy sv3qai sidwes

\@L

59 </
(100 356799 Nos-16474

Matlab as a Robust Control Design Tool
Irene M. Gregory
Dynamics and Controls Branch

This presentation is geared towards introducing Matlab as a tool used in flight control research.
The example problem used to illustrate some of the capabilities of this software is a robust
controller designed for a Single-Stage-To-Orbit airbreathing vehicle's ascent to orbit. The details
of the problem and the control law design are available from reference 1. The global requirements
on the controller are to stabilize the vehicle and follow a trajectory in the presence of atmospheric
disturbances and strong dynamic coupling between airframe and propulsion. Hence, the need for a
robust controller.

Matlab is an interactive program designed for numerical computation, data analysis and
visualization as well as a philosophy of open architecture. Fundamentally, Matlab is built upon a
foundation of sophisticated matrix software for analyzing linear systems of equations. The
relevance of this is that matrices are useful because they can describe so many things in a
mathematically efficient and highly flexible way. Matlab serves as a kernel from which several
toolboxes are linked. Application toolboxes as the name implies are a collection of predefined
functions intended to solve more application-specific problems such as a control design problem
that requires system modeling, controller synthesis and analysis. One of the most important tools
for modeling complex nonlinear systems and simulating them is Simulink. An example of such a
system is presented here. The model consists of an integrated aerodynamics/propulsion database,
various information for use with a pilot on approach and landing, and a full 6 d.o.f. rotating earth
equations of motion along with an atmospheric model. Not only does Simulink provide a straight
forward way to easily build this system, but it also incorporates files written in different languages,
in this case FORTRAN and C, in the model without any modifications.

Given the nonlinear system we proceed with trimming the vehicle and deriving linear models.
Both of these are predefined functions that can be executed in a single line. Since the system is
unstable, the controller is required to both stabilize the vehicle and follow the prescribed trajectory.
Typically synthesizing a controller is an iterative procedure and it becomes advantageous to
automate the process. An m-file consisting of Matlab commands can be used to define scaling for
optimized variables, construct the new linear system that includes these scaling, and perform
controller synthesis and analysis. This system model would also include uncertainty that may arise
from various physical considerations. Once written, the iterative process can be completed in a

few key strokes per iteration. These m-files serve as an example of yet another language that can
be utilized in Matlab.

485

This controller example utilizes some modern control techniques that are available from p-tools
and to some extent from Robust control toolbox. The controller synthesis problem is solved using
Heo optimization and analysis are performed using p, also known as structured singular value. p
is analogous to Bode plots in the classical control methodologies. The p plot allows an immediate
assessment of whether a controller has fulfilled the specified requirements. Once the desired
controller has been found, a model reduction, to reduce its dynamic order, is performed using a
number of techniques among them Hankel singular values and residualized truncation. A reduced
order controller is then integrated into the nonlinear simulation. Time response of the system is
evaluated as both a confirmation of frequency domain pt analysis and another way of evaluating
results.

Matlab/Simulink combination also has the capability of automatically generating C code for any
block in a diagram. This capability is very useful for transferring controller from the design
environment into non-Matlab environments such as real time simulation or even flight test. These
capabilities are being currently evaluated.

In summary, a number of different capabilities of Matlab were illustrated in this example. We
find Matlab a powerful yet very flexible tool to use in controls research.

References:
Gregory, Irene M.; McMinn, John D.; Chowdhry, Rajiv S. and Shaughnessy, John D.:
ic Vehicle Model an ntrol Law lopment Using Heo - hesis .

NASA TM-4562, July 1994.

486

Matlab as a Robust Control
Design Tool

Irene M. Gregory
Dynamics and Controls Branch

presented at
The Role of Computers In LaRC R&D
1994 Workshop

June 15 - June 16

Presentation Outline

Robust control law problem
Introduction to Matlab

Nonlinear system simulation
Linear model derivation

Sample command file

Controller synthesis and analysis
Concluding remarks

487

Robust Control Law Framework

Airframe/Propulsion
Nonlinear Model

N\

Linearized Uncertainty Model

A |
F 4 w

2= P —
u y

K(s) * \

Robust Control System
Design & Analysis

N

Framework for explicitly including structured Robust Stability
uncertainty in control law synthesis and analysis & Performance

Introduction to Matlab

* Matlab

— For numeric computation, visualization, and data analysis
— The basis of Matlab is matrix manipulation and matrix
solving.
— Matlab is a kernel from which several toolboxes, a
collection of predefined functions, are linked
e Simulink
- For advanced nonlinear modeling and simulation

e Application Toolboxes

- For customizing your Matlab environment with special
tools to solve more application-specific problems.

» e.g. Controls, u-Tools, Signal Processing, Neural Nets

488

Matlab Nonlinear Simulation

[Ex10 Bt grtions Siauletion Style Code
Mows, bn, iy, &b
man
o
watp
.-;-
P4 [2
AN owh
ER s Prp
Mnyx S L’i
T
M yx Ao
L4 M y.x g

Eqn’s of Motion Block

-—ps{ dcbeom

EOM

Block name: EOM
Dlock tupe: (Mask)

Coth

syszfundt,x,u, Flag.paraat,,,)

Subsysten function name:

[dcbeon

[Function parsmsters:

=

L [

* mdiinitializeSizes - initialize the sizes arr

* The sizes array is used by SIMULINK to
determ

* characteristics (number of inputs, outputs, s
*
#define EOMDEBUG
#define NSTATES 7
#define NOUTPUTS 115
#define NINPUTS 39
static void mdlinitializeSizes(S)
SimStruct *S;
{

ssSetNumContStates(S, NSTATES); »
numb

ssSetNumDiscStates(S, 0); I* numb
ssSetNuminputs(S, NINPUTS); /* numb

ssSetNumOutputs(S, NOUTPUTS); /*
numb

ssSetDirectFeedThrough(s, 1); I dire
ssSetNumSampleTimes(S, 1); I numb

489

Aero/Propulsion Model

—p! UX30dat —>

Aero/PropStability Derivatives

Interpolation

i

Database

Aero/Prop Model Block

c perform tabie look-ups
c

call ux30d({mach,weight,alpha,dela,dels,
1delit1,deif2,eta,specva$,altito,vela,
L]

Mass of vehicle
mass = weight/32.17

—p UX30dat }——»

sum aero forces and moments

Aero/Prop clift =cht + cidat + Cldet
cdrag =cdt + cddat + cddet + cdf1t + cdt2t

sinalf = sin(alpha*d2r)
cosaif = cos(aipha‘d2r)

&x = :y%" *cosalf :' clM'nlsnn Y+ eyt
ey = te + cydat + cydet + ¢ +¢
¢z x=-clift*"cosalf - cdrag‘sinalf

' (" = c::!‘botl ﬁ :lld:to:"c)ll.d: + cll(f;totv cll)
Subsyst clipt * p +clirt* ¢ span/| w
sys=fun(t, x,u,flag,paranl,,,) Help ecm = cn'z + cmdat + cmdet + cmfit + cmi2t +
1 emat*qbody * cbar/(2.0*vrw)
cn = cwbt'beta + cwdat + cwdet + cwitt + cwidt «
Subsystea function name: 1 (cwpt*pbody + cwrt * rbody) * bspan/(2.0°vrw)
¢

| w3odatz,

Function parameters: Im = dynp'nru'clm
v uru'cdng
l = lif/dr

000 00

©

Block name: asro/prop data
Block type: S-Function

i

o

tinal outputs from user code biock

lov

Xxaero = dynp*sarea‘cx
ysero = dynp‘sarea‘cy

490

Linear Model Derivation

>> [ad,bd,cd,dd] = linmod('ux30');

>> ad

ad =

-2.2037e-02 6.9900e-03 0 -5.6189e-01 -8.4104e-03
-3.7593e-05 -9.7957e-02 1.0000e+00 -4.2937e-05 2.8210e-04
-3.7335e-02 3.8823e+00 -1.2216e-01 0 -3.8333e-04
2.7302e-06 3.9183e-06 1.0000e+00 -3.9183e-06 1.6346e-14
1.0472e-02 -1.3703e+02 0 1.3703e+02 0

>> bd

bd=

4.5324e-02 4.1653e-01
-9.4348e-03 -2.1950e-03
-2.4606e+00 -2.4238e-03
0 0
0 0

Linear Model Evaluation

>> eig(ad)

-2.0772e+00

1.8636e+00
-5.4707e-02

1.3076e-02 + 1.9857e-01i
1.3076e-02 - 1.9857e-01i

* Unstable system=> controller requirements

= Controller stabilize vehicle
= Controller follows prescribed path

491

System Block Diagram

bo

[we {4 | e

Sy Abghy

oi @M_D—i_—f- vb’o.u
. m&._‘{}-}_;u Boh et

&

Soc

Ve
he

[K@

Controller Synthesis

>> Olplant_UX1
system: 12states 16 outputs 11inputs
Test bounds: 0.5000 < gamma <= 10.0000

gamma hamx_eig xinf_sig hamy_eig yinf_eig nrho_xy
f

10.000 3.9¢-02 3.3e-10 9.66-04 0.0e+00 0.0000 p
5.250 3.96-02 3.3e-10 9.6e-04 0.0e+00 0.0000 p

0.648 3.90-02 -5.80-05# 9.6e-04 0.00e+00 0.0003 f
0.723 3.90-02 3.9e-10 9.6e-04 0.0e+00 0.0005 p
0.686 3.90-02 -2.2e-02# 9.60-04 0.0e+00 0.0419 f
0.704 3.9e-02 4.0e-10 9.6e-04 0.0e+00 0.0009 p
0.695 3.9e-02 4.0e-10 9.6e-04 0.0e+00 0.0017 p

Gamma value achieved: 0.6948

492

Mogriksde

M-file Example

% Performance Weighting Functions on Actuators
Wpe = daug(20,5); % weighting on dele, deleta
Wpact = daug(1,1); % weighting on elevon rate

systemnames = 'ac Wpv Wph Wpa Wpq Wpo Wpe Wn se0 se1 se5 se6 Wpact
Fv Fh Wemdv Wemdh °;

inputvar = ‘[xt_inp{11)]';
outputvar='[Wpv;Wph;Wpa;Wpq; Wpo;Wpe;Wpact;ac+ Wn;Wemdv;Wemdh]';

input_to_aca'[Fh;Fv;set;se6]';
input_to_Wn='[xt_inp(1:5)]';

input_to_Fh = :[xt_inp(s)]';

% H ° controlier calculation
[k1,clpi]=hinfsyn(acolpt,nmeas,ncon,0.5,10,0.01);

Controller Evaluation Tools

18 14

--+- Nomnal Perlomance < - - - Nomnasl Pertormance
16 — = Robusl Stabinty 12 = — Robusl Stabihty
— Robus! Perlormance ~— Robust Perormence
12 - 3 e ————
7N E 08 ._‘
1 P .. e
.......... 06 tereeaiaenn
et H
os VRS
M 04
' /’ A -
___________________________ -
0s ’ \ oz |- ~1
/ N L
02 vd 0

* Frequency domain p-based performance
evaluation plots

493

Controller Order Reduction

* Nominal controller - 23 states

» Balanced realization and Hankel singular
values
- »> [Kbal, hanksv] = sysbal(Khinf);
- >> [Kred,Kunst] = hankmr(Kbal,hanksv,13);

¢ Final reduced-order controller - 13 states

Nonlinear Simulation

[€210 gttt gotione Steulstion Sgyle Code

L

Masa, b by ke, b

e
-
tored pt @
Pa,y.8 Awe sosondim
iy
Py vy

Mxyz Prep

Yeahins

[azm | — o

nfe

= o m—

l——'""l‘ ow

E—:ﬁgﬁl CLTTYe E.‘ s _.[E.:‘:_

ﬁ.:a.-::r

494

Magmiude

Magvude

Controller Evaluation

* Reduced order controller evaluation in
frequency and time domain

~ p(closed loop system)
- nonlinear simulation time response

=== Nomnal Perormance
t2 = == Robusl Siabikty
~—— Robus! Periormance

o8 —r— —
06 Tttt ’
oa
o2 ——— - - TTTT= -
]
[}
001 o1 1

Amphiude. fifsec

100

.0

(14

40

20

4
S
P4
S = Nominel e9pONes
/1
Fa “ e (e) 325 % uncenswy
Vi
= = {) 325 % uncenanty
20 40 60 80 100

Time. sec

Controller Evaluation

e Reduced order controller evaluation in
frequency and time domain

14
- = Nomnal Pertomance
12 — = Pobust Stabikty
—— Raobusl Perlormance
N o
oe 1
s b e .-
04
,’_ ——————
L X3 ol =~
°
¢ 01 01 ' 10

495

Amphwsde. f/sec

100

30

(14

40

20

7
r4
Fi —— Nommal response
A1
y -= = (+) 325 % uncenenty
= = {1 325 % uncenmny
20 40 60 80 100

Time, sec

Concluding Remarks

e Matlab capabilities utilized
- Link together FORTRAN, C, and Matlab functions
- Nonlinear simulation
— Trim vehicle
~ Derive linear model

— Control application toolboxes for controller synthesis
and analysis

496

56/"/3
E 110060

N95- 16475

P22

Simulation of the Coupled Multi-Spacecraft Control Testbed at the Marshall Space Flight Center

D. Ghosh and R.C. Montgomery
NASA Langley Research Center, Hampton VA 23681

1994 NASA Langley Workshop on Software Systems
June 15-16, 1994
Hampton, VA

The capture and berthing of a controlled spacecraft using a robotic manipulator is an important
technology for future space missions and is presently being considered as a backup option for direct
docking of the Space Shuttle to the Space Station during assembly missions. The dynamics and control
of spacecraft configurations that are manipulator-coupled with each spacecraft having independent
attitude control systems is not well understood and NASA is actively involved in both analytic research
on this three-dimensional control problem for manipulator-coupled active spacecraft and experimental
research using a two-dimensional ground based facility at the Marshall Space Flight Center (MSFC).
This paper first describes the MSFC testbed and then describes a two-link arm simulator that has been
developed to facilitate control theory development and test planning. The motion of the arms and the
payload is controlled by motors located at the shoulder, elbow and wrist.

A symbolic manipulator, MAPLE, is used to derive the equations of motion based on a Lagrangian
formulation. The equations are programmed using the autocode feature of MAPLE in FORTRAN and are
then embedded in a usercode block of MatrixX which is the primary simulation software engine. The
simulator implements a digital joint motor controller. The joint motor control scheme generates
commands for the motor based on the difference between the joint angles derived from telerobotic
translational command inputs using inverse kinematics and joint angle measurements.

497

eA ‘uoldweH
661 ‘9L- G sunp

swelsAg alemyos uo doysyuop Asibue YSYN 661

18962 VA ‘uoidwieH
I8lue) yosessay As|bue ySyN

AswoBiuop "D Y pue ysoyy °q

191ua) 1ybil4 soedsg |jeys.eyy ay; je
paqisa] |oJjuo) Yelsoaoeds-ninn
pajdno) ay} jo uonejnwig

498

S}iewey bBuipnjouo) .
SHNSOYH e
woelsAs .
Buljjepoly
MBINIBAD o
10le|NWIS

Ajjioe Yoleosey

wa|qoid e

3INITLNO NOILV.LIN3IS3Hd

499

amnyg soedg ~_

uope)s soedg

N T~

spued Ag

SHInyg 3dedg a3 03 Sunyliog uone)g sdedg

Wd[qo1d jo13u0) Peidsoedg Apog-nmpy

500

SUr] wiry

SIOJO JuUrOpP 9seg LQMmqow s

/
98epuaddy / -
Aenry rerog yym Amroed 10014 1813 DS
Iseg Lmqop 4ss

4381831 HOYvVIS3Y J3INNV1d

501

Lmroey o001

\ Teld OIS

Juop moqry N\

Juror Iapmoys

502

f

Hoddng 1opmouys
10J aseq paxtyg

A381S31 HOYVISIY INIHHND

siajaweled |eaisAyd

503

XXxiep - induj uanlb e 1oy O3 ajelboyul Aljlesuawny e«

37dVIN - (WO3) uonop jo suonenby anlaqg «

M3INIBAQ

dOLVINNIS

504

XXIBI JO }00|q 8poalasn e uj pappaqua aJe suonenby
NVHLHO4 u! pajesauab ase uonop jo suoljenb3 ay} 10} apo)
(37dvIN) uonjendiueny sjjoquihs shojdwg

uonejnwio4 ueibuesbe] uo paseg

uonjoj Jo suonenb3 jo uoneauaqg

dOLVINNIS

505

M I HOM [ENUIA

4 :uopedissiq ybiejey

A -L=T :uelbueibe

be e e m&%n

ie Me Te \1e)P

UOIOJ\ JO suoiienbg

ONITT3AAON

506

Pasn [9pON walsAs

SHOLONW
LNIOr

507

ﬁmmm urs g €] + ¢g uIs ¢g [+ Ig uis H@ 1) +

mm SOD g £ +¢Q SOO 9 I + Ig soo '0 '] w5 £ o +

¢l ¢ [4
Nm T T + [,(%g uts ¢ 7+ g uisig 1) +

NAmm S0D m@ wm + Ig soo 6 D] NINI

w
¢ ¢ o ! I.N
ABiauz onauny «

508

(panunuoo)

ONIT13Aon

2% -50) oy L4 o -2p) iy pish-up) iy <

(% -

uonedissip ybiejey
S9)AL+ (lg- %9)2L + 'Sg 9 = M >op [enuIA

4
mAmme - 89) m&:.

N

AN%@ - N@ v an NAH%@ _ H@ v ._”vmv.—

ABieu3z |enjuslod

(panunuo))

ONIT13AoONn

509

I1dVIN Aq AjjeaijoquiAs suop uoisianul X1epn

(63 - 6(6'00 - D) (0). W= 0
O = 6 + 66'0D + 0O

S 300 dJeaulj-uou pajdnoy .

NOILON 40 SNOILVYND3

510

EE.QSTM - £0) =gz
jd., SNONUTIUO) ¢ SHE408F 294 - zn) =zx
s lm_ wMT_. 08T+10 =14 | | o
|86
&g paTs X dﬂﬂr& . . _ seTbueTjuto(
PoTs X
pars
 snonut3uoj | S0°0 lwm
_] A 30078
L 55— N_ 24 yaans P c
d S T
— . Nlﬁimxc.._:ﬁ Za3ndwo)
& ISTam XA

0
81"3234 YISN [l 7

Istam™x 5] ak
Tea7sod

Ty J £
]

101e|nwWIS walsAg

511

53 0<>0x
T "
ISY3 s
B[Eﬁ -
B[Nn
. 111
sod

8 e 3
b g 7.
- § “ : . A“ w3sn = wm
- m f-

2037syuT]

512

SININIUNSYIN

9 AMV
U#
- b

I

wialsAg jo4uo0)

e NDI
]
bPg] AN [O

ANI

TOYLNOD
aNVH

‘I-r/lﬁ

513

009

|

A 009

NOILVANDIANOD AALOVALAA

NOILVANDIINOD TVILINI

JIANINVIN LSHL

514

005 INL
oot 06 08 oL 09 0s oy

‘Bop ‘ajbue
ujol moqg

‘6op ‘s)bue
uiol sspjnoyg

5999888 8E

S/W 190" = Aj1o0jan-x peojAed

SL1NS3y

515

PE-NNMOL §T°S0:EL oM YSYN

s/W 90" = Al1oojan-x peojAed

(1uod) s11nS3y

w‘dsip A

w‘dsip x

516

Buljjepow u; pepasu sjuswanoidw) .
AlaAnoayas pasn sjoo; uonelnWIS .

Buibeinoous ale sjinsay .

S)ieway Buipnjouon

517

SESSION 10 Languages
Chaired by

Robert F. Estes

10.1 Object Oriented Numerical Computing in C++ - John Van Rosendale
10.2 Hardware Description Languages - Jerry H. Tucker
10.3 High Performance FORTRAN - Piyush Mehrotra

518

356194 rye N95- 16476

1994 Workshop on The Role of Computers in LaRC RE&D
Object Oriented Numerical Computing in C++

John Van Rosendale

Institute for Computer Applications in Science and Engineering ‘P / 7

jvr@icase.edu
Synopsis

(++ is an efficient object-oriented language of rapidly growing popularity. It can be of real value in a

wide range of disciplines, including numerical computing, where it seems to offer important advantages over
most competing languages.

Object-oriented languages

What exactly is an object-oriented language? The most important defining characteristic is support for
“polymorphic data types.” Procedural languages, like Fortran and C, contain built-in types such as integers,
reals, characters and so on. The integer type, for example, consists of the requisite bits of data, a set of
associated operations, +, ¥, /, ..., and coercions to and from the other built-in types. One can build data
structures of arbitrary complexity in Fortran, but these are not “first class” types, like integers.

For example, one can form a “sparse_matrix” from arrays of integers indexing into arrays of reals. But
Fortran 77 does not let one declare several of these as

sparse_matrix A,B,C
and then perform operations such as:
A=B+C

Languages like Clu and Ada, supporting “abstract data types,” let one do precisely this. One can, for
example, in Ada define a “set_of_words” abstract data type. This would be a user defined type which might
be useful in comparing documents. Once the type is defined, one can then declare several such sets

set_of_words A,B,C
One can also operate on them just as with the built in types
A :=B .+. C

where .4+. might be a user-defined union operation.

OO languages push this concept further, allowing one to define a “set_of_<type T>”, where T can be
any type in the language. This new type, a “set_of_<type T>”, is “first class” in OO languages, one can use
variables of that type exactly like those of the built-in types. To make this clear, types are called “classes”
in the OO world, while values of those types (classes) are called “objects,” though whehter these new terms
do more to clarify or obfuscate is not clear.

To see how OO ideas might be used in numerical computing, it might, for example, be useful to define
a class “mesh_cell” which would be the basic unit of an unstructured mesh. Mesh cells come in a number
of varieties, which can be thought of as subtypes (subclasses) of the type (class) “mesh_cell”, as shown in
Figure .

All mesh cells share certain properties, volume, temperature, pressure etc. declared as part of class
“mesh_cell.” Cubes and tetrahedrons share these properties, but have their own unique properties as well.
They have different numbers of faces and vertices for example.

The ability to allow useful computing on a set of related but not identical user-defined types is the defining
characteristic of OO languages. In the above case, one can make an array of “mesh_cells”, consisting of prisms,
tetrahedrons, and cubes. One can access the volume of any element of this array, since all “mesh_cells”

have volume. To access specialized properties, one may have to select on the particular subclass of each
“mesh_cell”.

519

mesh_cell

prism tetrahedron cube

Figure 1: Mesh cell type hierarchy

C++ in numerical computing

How useful will C++ be in numerical computing? C++ contains most of the useful new features in Ada
or Fortran 90, and is easily extensible in a number of ways. People around the world are rapidly developing
class libraries for finite element analysis, for sparse matrix arithmetic, and so on. C++ together with a new
class library is essentially a new application-specific language, and one that may have a powerful impact on
a particular subdiscipline.

To see how this could have an impact, one need only realize that there are, for example, at least a dozen
different unstructured grid codes here at Langley, with relatively little code shared between them. Given the
appropriate class library supporting unstructured grids, one should be able to prototype new unstructured
grid algorithms much faster, by borrowing large chunks of previously written code. This is the promise of
OO computing in C++. Efficient execution, compatibility with previously written C and Fortran, and the
OO approach are the major advantages to C++.

C++ also has its problems. One is that its syntax and semantics, inherited from C, are needlessly
corplex, significantly steeping the learning curve for new programmers. Another problem is that, like Ada
and Fortran 90, C++ is a large language, full of complexities most programmers will never master. Only
experts will master the full language, with most programmers limping along on their own particular subset.

These problems are real, but clearly not fatal, given the exponential growth of C++4. From one perspec-
tive, C++ is essentially a halfway point between traditional procedural languages, like CC and Fortran, and
“rapid prototyping” languages like Smalltalk. Over the longer term, as computer power increases and our
algorithms become more complex, one expects research numerical computing, like that done at Langley, to
shift in the “rapid prototyping” direction. Use of (C++ is an important step in that direction.

520

Surresurdus] pue adusIdg ul suorjedijddy J1ejinduwo)) Ioj anjIysuy

npa-asedlpIAl

2IDPUISOY UDA UYO[

ARY HYOT Ut supndwoy) fo 210y Y[U0 doysyiop 7661

+ 49 ur Surnduwo)) [edrrdwIn)] pajusaLI() 323[qQ

521

-1omod DTJURISS POSBAIIUI I8} sedensue] O
oAT3 buipuLq 2UUDUAD PUR ‘QOUDNLIYUL ‘UODINSADIUD ‘T
i 08 yery sSuryy o) pue ‘wsiydiowdjoJ “wistydiow
-Ajod poyreo st sod£} pauyop-Iesn paje[ol JUIXIUWINU]

's309lqo paed a1e sodA} YONs JO SOnNeA e

'S9SSe[d po[eo oIk sodA} yong e

‘sod A} pajera1 asoy) Jo senfea ajendiu
“eWI PUE XIULIDIUI U9} pue sodA} paje[or Jo 39S € 9)eald
0) s1osn SUIMO[[e auo SI oFendue| pajusaLio 3d3fqo uy

522

B[uWIS

SO1D

sdoor

SI030V

reosed aa130elqQ
D 2a129[qQ
[Pt
ST[RL,/IMO
++D

AreHEWS

saSensue] OO UMOUY [[PAA dWOS

523

524

O+ 8 = ¥

‘q‘y XTIqeuw osxeds
0 dV XT

:0p U9y}
‘od£y xtryewr-osieds e ouyep 0} Aem ou SI 9I19YJ, ‘sodAl
mau ur ayeoridnp jouued Iasn oY) serpredord [njromod
oArY ‘odurexs IOJ ‘so[qelIeA 189Ul ‘() J0U ST URINIO]

-107e10do UOTUN poUYSP 1SN € SI *+* 2IoyM

o "+ 4 =2 v
N‘qg‘y spIiom~Jo 388

:0d£y spiom~Jjo99s,, & 10 9dL) xirjeurosreds,
© 9)BOID UeD dUO0 ‘epy U] ‘sedA} mou auysp O}
s1osn mofpe sod4A} eyep joerysqe,, Jurproddns seFensue]

525

MOPUIM JIPI[S paJapJoq

PN

MOpUIM JIPIIS MOpUIM ™ paJap.loq

~ 7

MopuIs

:901))R] Ssed [eddA],

526

[[M seInjoni)s ejep xs[durod syroddns pue JusIdYIe SI
11 9outs ‘Surururerdord OYIYUSIDS UI [NJosn A[[eTIUd}0J e

(Surwruress
-oxd swrojsds 10j pepuojur A[eurdiio Y3noy)) seiny
-on1js ejep xordwod yYjm urersord Aue uo [njes() e

N Yym o[qryeduod prem
-umop o9gendue] pajusIIoO $09[qO PaIaYD-A[[RIIIR)S | @

i ++D st yeyM

527

{ ‘{a-d uinjex } gsuod ()92zTS 3uT

{ ‘d--% uxnzax }()dod]
{ ‘e=++dx }(e 1)uysnd proa

{ ‘A []eaeTep } () ¥doe3ls,
{ {[s = zs]]l mou = d = £ }(s 3ur) ¥oe3S
:o1Tqnd

528

‘Zs jqut
‘d %],
‘A %]
} ¥oe3s sseIOd
<] sseio>9jerdwe)

srojourered se sad£) yjim suorjorIlsqe ejep — sajyejdwa],

bR,

((Ed)yuoTun gd)uotun:id = ¥d
vd

(ed‘(2d‘Td)uoTUn)uoTun
€¢d + ¢d + 1d = ¥d

uorun uogAjod :ordurexy

(- =i/ -+4) sjoquis 10jeredo ur-jinqg oy} Ioj
SASTL MAU SUYp 0} AJIge oY) — SUIpeo[IsA() I0jerad(

529

seoe] g -
S8DTJI9A 9 -

sustad
seoey 9 -
S9O0T3I9A § -
:aqnod
seTqeTIeA MOTJ -
sumyoA -
:TTo°
aqnd uoIpayen?) wistid

[1°93

SOPO0D [BJIIdWINU Ul 90UR}LISYUI SUIS()

530

Axeaqy ssepd
JIAJOS JAIIRII)I

Areaqr ssep
JOA[OS URWIAIY

Axeaqiy ssepd
PLI3 paJanjon.ajsun

:9SNA.I IPOI 10J [e1IUI}OJ

wreadoad

MU

531

‘popIoA® 9q A[[ensn p[noys pue jusidy

-Joul aIe ‘so[qerres xo[durod se yons ‘s30elqo paurers aulq e
-zouru st (9099[qo

xtryewt asreds ® '3-9) $300(qo 931e[SUISN UT PBAYISAO0 YT, @
‘suonjoeIjsqe pue wstydiowijod sproae

oUO JI ‘URI}IO 10) Se)Se] Se jNOoqe Suni 9pod ++> e
"JUSTOTO
9IOW YONUI ST jnq ‘Y[ej[ewi§ of1 ‘sodengue padAy AfTed

-tureudp jo remod orjuewILs 9} Jo yonw sopraoid ++D e

Aouaroigy

532

'pajeIa[o) 9q PInod
AJUSIOIJOUT SWI}-UNI JURIYIUIIS Je() ‘sjusurarordurr
OTWIYHIOS R WO UTe3 e YONS 9 P[NOd 9IaY} ‘I9ISed
Areryuegsqns Surwrurei3ord oyeuwr pinom sSensue| e JT e

"9[0AD UOIINOeXs pue ‘urddngep ‘Surmrurerdord
9IT}Ud Y} JO SULId} UI JO JY3NOY) 8q P[NOYS AU e

SUOI}eAIdSq ()

533

Axeaqi ssep

weadoad

! \
A V%

3y
JudSIfIul

weasoad

Aqeradotduy

534

‘srowrure13o1d uoomlaq 9poo
Surreys 10] pue osnal apod 10J sorjunjioddo 9sesId
-ul p[noys +-+, ur swyjLiosfe reorewnu Surdo[pAs(J e

‘IJH sdeyied pue uelI}ioq
‘O YIIM POXTULIIUI A[Ipeal 9 URD pue ‘JUSIOIJO SI)] @

‘TPM AIoA SW)LIOF[e [edlrownu xo[d
-UI0D IO} POpoou SaInjonils ejep oY) sjroddns 4+ e

‘pIepuesls 030rJap 9Y)
ouI009q sey pue ‘ofendue] (O)() OAIRJe Ue SI ++) @

SUOISN[oU0))

535

D5 645 [100¢ N95- 16477

Hardware Description Languages
Ipuo guag P /0
Jerry H. Tucker

Hardware description languages are special purpose programming
languages. They are primarily used to specify the behavior of digital systems, and
are rapidly replacing traditional digital system design techniques. This is because
they allow the designer to concentrate on how the system should operate rather than
on implementation details. Hardware description languages allow a digital system to
be described with a wide range of abstraction, and they support top down design
techniques. A key feature of any hardware description language environment is its
ability to simulate the modeled system.

The two most important hardware description languages are Verilog and
VHDL. Verilog has been the dominant language for the design of application
specific integrated circuits (ASIC’s); however, VHDL is rapidly gaining in
popularity. VHDL was developed for the DOD and then transferred to the IEEE in
1986. The language is defined by IEEE standard 1076. Since 1988 the DOD has
required all of its digital ASIC’s to be supplied with VHDL descriptions.

By describing a digital system in VHDL at a behavioral level, the effect of
different architectural decisions can be simulated and evaluated early in the design
process. Once an architecture has been selected the various circuits in that
architecture can be described using a restricted subset of VHDL. It is then possible

to synthesize that VHDL description to obtain the actual implementation of the
circuit.

536

Hardware Description Languages
by

Jerry H. Tucker
Presented at the Workshop on
The Role of Computers in LaRC R&D
June 15-16, 1994

Questions Addressed

What are HDL’s?
Why use HDL’s?
What HDL’s are available?

How do HDL’s differ from other
languages?

537

What are HDL’s?

A special purpose programming language.
Primarily for specifying behavior and
structure of digital systems.

— Replaces traditional digital design techniques.
— Supports wide range of system abstraction.

— Supports top down design.

Running the HDL program simulates the
modeled system.

Why use HDL’s?

Old design methods are inadequate to
satisfy demands on digital systems.
— Increasing complexity.

— Decreasing development time.
Automates design process.

— Requires digital hardware designers to also be
programmers.

HDL synthesized to implement design.

538

Types of HDL’s

Two dominant HDL’s.
Verilog
VHDL

A key component of both is the simulator.

Verilog

Developed 1983-1984.
Originally proprietary.
Now IEEE 1364.

Dominant language for ASIC’s.
— More “real” designs in Verilog.

Inherently faster simulation than VHDL.

539

VHDL

DOD required common HDL to support
designs from different vendors.

DOD contract awarded in 1983.
Strong Ada influence.
Public released 1985.

VHDL (cont.)

Transferred to IEEE in 1986.
IEEE standard 1076 in 1987.
Revised standard IEEE 1076-1993.

Since 1988 DOD requires all its digital
ASIC’s to be supplied with VHDL
descriptions.

540

VHDL (cont.)

* VHDL more verbose than Verilog

» Example in VHDL

IF ((cIk’EVENT) and (clk="1") and
(clk’LAST_VALUE=0")) then ...

* Example in Verilog
@(posedge(clk)) ...

VHDL (cont.)

» VHDL more flexible than Verilog.
» Momentum seems to be with VHDL.

541

Levels of Design

* Behavioral
— Highest level, Most general.

» Register Transfer Level (RTL)
— Defines registers, counters, 1/0 buffers etc.
— Can be synthesized to specific devices.

* Gate Level

— Defines design in terms of logic primitives.

VHDL Example mod 3 counter

-- MOD 3 counter VHDL example for
-- The role of computers in LaRC R&D
-- workshop June 15-16, 1994.
use work.all;
entity CNT is

port(CLK: in BIT; Q1, QO: out BIT);
end CNT;

542

mod 3 counter (cont.)

architecture BEHAVIOR of CNT is
begin
CNT3: process(CLK)
variable COUNT: INTEGER :=0;
begin
if CLK ="'1' then
COUNT := COUNT + 1,

mod 3 counter (cont.)

if (COUNT > 3) then
COUNT =0;
end if;
QO <= bit'val(COUNT mod 2) after 10 ns;
Q1 <= bit'val(COUNT/2) after 10 ns;
end if;
end process CNT3;
end BEHAVIOR;

543

VHDL example test bench

-- Test bench for MOD 3 counter VHDL example for
-- The role of computers in LaRC R&D

-- workshop June 15-16, 1994.

use work.all;

entity TB is end TB;

test bench (cont.)

architecture TEST of TB is
-- Signal declaration.
signal CLOCK, Q1, QO: BIT;
-- Component declaration.
component CNT
port(CLK: in BIT; Q1, QO: out BIT);
end component;

544

test bench (cont.)

for Ul: CNT use entity work. CNT(BEHAVIOR);
begin
-- component instantiation statement.

Ul: CNT port map(CLOCK, Q1, Q0);

CLOCK <= not CLOCK after 50 ns;
end test;

545

sidd 1100¢3 N95- 16478
1994 Workshop on The Role of Computers in LaRC RE&D

High Performance Fortran £~ /7
Piyush Mehrotra

Institute for Computer Applications in Science and Engineering
pm@icase.edu

Introduction

Recently an international group of researchers from academia, industry and government labs formed the
High Performance Fortran Forum aimed at providing an intermediate approach in which the user and the
compiler share responsibility for exploiting parallelism. The main goal of the group has been to design a
high-level set of standard extensions to Fortran called, High Performance Fortran (HPF), intended to exploit
a wide variety of parallel architectures [2, 4].

A major performance issue of most parallel machines including distributed memory machines and non-
uniform access shared memory machines, is the locality of data. The HPF extensions allow the user to
carefully control the distribution of data across the memories of the target machine. However, the compu-
tation code itself is written using a global name space independent of the distribution of the data. As HPF
is targeted towards data parallel algorithms, it supports forall loops and array statements to specify the
data parallelism. However, there are no explicit constructs for management of tasks or for communication of
data. It is the compiler’s responsibility to analyze the distribution annotations and generate parallel code,
generally SPMD, inserting synchronization where required by the computation. Thus, using this approach
the programmer can focus on high-level algorithmic and performance critical issues such as load balance
while allowing the compiler system to deal with the complex low-level machine specific details.

The HPF design is based on language research done by several groups, in particular, Kali [5, 6], Vienna
Fortran [1, 7] and Fortran D [3], the first two of these were partially developed at ICASE.

HPF Overview

High Performance Fortran is a set of extensions for Fortran 90 designed to allow specification of data parallel
algorithms. The programmer annotates the program with distribution directives to specify the desired layout
of data. The underlying programming model provides a global name space and a single thread of control.
Explicitly parallel constructs allow the expression of fairly controlled forms of parallelism, in particular
data parallelism. Thus, the code is specified in high level portable manner with no explicit tasking or
communication statements. The goal is to allow architecture specific compilers to generate efficient code for
a wide variety of architectures including SIMD, MIMD shared and distributed memory machines.

Fortran 90 was used a base for HPF extensions for two reasons. First, a large percentage of scientific
codes are still written in Fortran (Fortran 77 that is) providing programmers using HPF with a familiar
base. Second, the array operations as defined for Fortran 90 make it eminently suitable for data parallel

algorithms.
Features of High Performance Fortran
In this subsection we provide a brief overview of the new features defined by HPF.

e Data mapping directives: HPF provides an extensive set of directives to specify the distribution and
alignment of arrays. The distribution directives can be used to specify the layout of data arrays on an

underlying set of abstract processors. The alignment directives allow the arrays to be aligned so that
specified elements are placed on the same abstract processors.

546

e Data parallel ezecution features: The FORALL statement and construct and the INDEPENDENT

directive can be used to specify data parallel code. The concept of pure procedures callable from
parallel constructs has also been defined.

o New intrinsic and library functions: HPF provides a set of new intrinsic functions including system
functions to inquire about the underlying hardware, mapping inquiry functions to inquire about the
distribution of the data structures and a few computational intrinsic functions. A set of new library
routines have also been defined so as to provide a standard interface for highly useful parallel opera-

tions such as reduction functions, combining scatter functions, prefix and suffix functions, and sorting
functions.

e Ezirinsic procedures: HPF is well suited for data parallel programming. However, in order to accom-
modate other programming paradigms, HPF provides ertrinsic procedures. These define an explicit

interface and allow codes expressed using a different paradigm, such as an explicit message passing
routine, to be called from an HPF program.

Full details of the language can be found in the HPF Language Specification document [2] which is also
available via anonymous ftp from public/HPFF/draft at titan.cs.rice. edu.

There is a second round of meetings of the High Performance Fortran Forum being currently held in
Chicago to consider clarifications of HPF 1 and to chart out requirements for future extensions to HPF.

Further information about these meetings and HPF in general can be found on Mosaic through the URL
hitp: //www.erc.msstale.edu/hpff/home. himl

References

(1] B. Chapman, P. Mehrotra, and H. Zima. Programming in Vienna Fortran. Scientific Programming,
1(1):31-50, 1992.

(2] High Performance Fortran Forum. High Performance Fortran Language Specification Version 1.0. Sci-
entific Programming, 2((1-2)):1-170, Spring and Summer 1993.

[3] G. Fox, S. Hiranandani, K. Kennedy, (. Koelbel, U. Kremer, (. Tseng, and M. Wu. Fortran D language
specification. Department of Computer Science Rice COMP TR90079, Rice University, March 1991.

(4] C. Koelbel, D. Lovernan, R Schreiber, (i. Steele, and M. Zosel. The High Performance Fortran Handbook.
The MIT Press, 1994.

[5] P. Mehrotra. Programming parallel architectures: The BLAZE family of languages. In Proceedings of
the Third SIAM Conference on Parallel Processing for Scientific Computing, pages 289-299, December
1988.

(6] P. Mehrotra and J. Van Rosendale. Programming distributed memory architectures using Kali. In
A. Nicolau, D. Gelernter, T. Gross, and D. Padua, editors, Advances in Languages and Compilers for
Parallel Processing, pages 364-384. Pitman/MIT-Press, 1991.

[7] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna Fortran - a language specifi-
cation. Internal Report 21, ICASE, Hampton, VA, March 1992.

547

npaasedlp.ud

SuireauIduy] pue souaidg ul suorjedi[ddy 1eynduwio)) 10§ anInIsu|

DLJOSYI P YSNAL]

7661 9T ounf
dRY HYLT ut ssaindwoy) fo 9]0y Y] uo doysyiop 7661

NVHdILHd04d HONVINHOAHHd HOIH

548

a7

‘(sfe1re £q pojusseider) Davp Paunion.is fo $340d JuaLdfip uo
1271040d UL pawsiofuad suorpiado opuwirs swusipa[ered ejye

rwstrered ejep J1qIUXo
‘SI97DILISAI YSYN 0% 1SOI9UI JO S9p0d SUIPNOUI ‘S9p0d JYIHUSIIS JSOIA

‘souryoew (VINNN) Sse0oe Arowewl uriojiun-uou (NI
pue (JINIS U0 2ouvwiofuad doy j0eIIXS 0) $9p0I 19]1040d
D)DP IOJ SUOISUDIXD ()f UDLLO0] pIepueis, JO 39S ® dULYSP 0}

3006 fiuvwid g

wInJiogj ueljioq aueuwliolrdJ YSIH

549

S9OIOYD UOIINLISIP SoIIMpPIey] —
8nqep pue uSisep 0} JNOYIP ore swrersord —
STIe}op [9A9] MO[YIm 8d0D 03 Sey Iasn —

:S93ejURAPeSI(] @

'9INYIYOIR
Suif[ropun jo uoryejo[dxas aa1309je smofre yoeoidde [orrered A3rdxyy e

"UOI)RITUNUWIUIOD JO UOT}ISSUT —
pue ‘ejep jo uonnqruisp —

:501mMbol soUIYORW AIOWAW PIJULUISRI] 0) S9P0D FUINOJ @

UOIYRAIOIA]

550

"UO(BIIUNWWOD pappaquia

UM 8p0d QWJS - 8p0o pajelauss

V. A

\

“BlEP pUB 8p02 JO UORNQLISIP ms

buyjjonuoo ajiym eoeds (xapuj) sweu
5 \mdo\o, B asn o] QmEEmE.QQ __QS\

J8/1dwoo
[S S

(77777777

L[LLLNS S

N

“BlEP paJeys uo
suoneJsado [ajfeled - 8poo J8sN

-yoeouiddy

—(
wy
wn

"SUOI}0RISI UL
$59001d 10] S}USUIS)R)S POPPIQUId 1M 9p0d (JINJS seonpoid 1eniduro)) e

"UOT)RITUNWIWOD I0 UOI}RZIU
-0IYOUAS ‘jusmiofeurwW $$9001d I0J S)UDUIINR)S 101 dXe Ou aIe 9IdYJ, @

‘200ds TIpus 10016 e Fuisn JnoAe[evyep S[OIJUO0I 19S() e

"WI9)SAS awIyunl/I9[IduIod oy} pue I9sn
o) Ueam}aq paIeys oq 0} ANqiqisuodser e st wsi[rered urojdxy e

yoeoaddy

552

(2661 ‘HSYDI/BUUSIA JO

'ATU[)) URIJIO] IOJ SUOISUd)XS JO 10S 9AISUSYaIdUIO) - URIIIO] BUUDIA
(1661 ‘"ATup) 901Y) SUONISOdUIOIdP 0} JUSUIUSI[R PIMO[R - (JURIIO]
T UDLILO D ‘MpanoN (I ‘Ipisfia) ‘Quadng ‘O ‘ourd -

(8861 ‘HSVDI) seuryd
“eWl AIOWIOUWI PIINQLIISIP I0J SUOINLIJSTP R)ep d[qeynads Issn - Ie3]

(gL61 ‘o0ssy dwo)) ‘ssepn)
AI OVITTI 10] o3endue] (JNIS Ue ul suonnquisip eyep - NVHILAI

jJI0M STIOTADIJ

553

1esqns IJH ®
UO0T)RID0SSE 93e10)S puk 90uanbas U0 SUOIIINIISIY @
SoINYed) ()/] MU O\ e
SoInpad0id OISULI)XT e
SUOT)OUN] AIRIQI[/SOTSULIIUI MON] @
1ONIJSUOD PUR JUSWII)R)S [[eI0] :S10NIISuU0d [a[fered eje(] o
1MO0AR] BJep IO0J SOAI}ISIID I9S() @
'099 ‘se[npour

‘suoryerado Aelre ‘SOIN}ONIIS B)EP MOU - 93enIue] ose(q Se (g UeI}IO] @

saanjeaqd AdH

554

OddN4

(1+90 + g = (V)V
N ‘T=1od

:peonpal 9q URD $)S0J UOIRITU
-NUWUI0) ‘AIOWDUI dues 9y} Ul ‘o'l ‘paubyp Ar1edoid ST ejep pole[aI Ji e

OddNd

I+ (Mv=>0V
N ‘T=1o0d

:[orreded ur suop oq ued suorjerado
‘SOLIOWIOW JUSISHIP Ul “'9°1 ‘pagnqiuysip Apredoid st ejep poje[oiun jie

:SNY T PpaUdWbvLl fi))049UID S1 $9UNJ02UYIUD 12]]04DA JO ALOWI AT

aleuorjey InoAerq eje(

555

4085230040 0018fiyd

f 3

[SsgOSSaDOUd]
$.40883204d 30DUISQD
[orureu£p] [o13e18]
HLNAIdLSIAdHY HLNIIYd.LSIA

$930]1dUd] 4O SADULD

[orureu£p] [o1y2)8]
NDITVHYH NDITV

$109[Q0 42Yy30 40 SADILD

[opoIA suldde]N AdH

556

uoI)RITUNWITIO) patinbal ssonporjur I[idurod e
200ds Tapul 0Qob e JUISN UDYILIM ST 9POD e
9SIMYO0[q PINqLIISIp N ARIIR JO SUUWIN]OD ©

n Aeire Yym poaulife Aeorjuspl f Aelre e

$10880001d }0®I}sSqe JO Aelle [RUOISUSWIP-9UO © :d e

TIVHOd ANH
(CD5- ((1-0'Dn + (1+0 7o +
(Fr-Dn + (C‘T+0)n)ygz0 = ([‘Yn
(1-w:g = [‘T-w:ig = 1) 1IVdO4

n:d oINO (3001d€°‘y) ALNEIYLSIA $ddHi
J o0 HLIM NODITV $ddHi

(u ‘u)j ‘(u‘u)n TVA™
(()s1osseoord jo-requnu)d sHOSSHAOOUd $ddHi

iqooe - sjdurexy

557

1 1717 171 1 11

7d | ed | gd | 1d

§40882204d ¥ U0 ADLLD JUIWIID FT V

:(Z)OI'TOAD ®

OI'TOAD @

558

:MO001d e

eje(Jo uonnqriisi(g

"QUUDS Y] SUIDUWLAL IPOI Y] - PIOUDYI 94D SINLJIILLD UOWNQLLISIP Y] U

TIVHOAd ANH
(Fo5- (1-f Do+ (140 ‘70 +

(f‘1-0n + ([‘1400),gz0 = ([‘)n
(1-w:iz = [‘1-w:g = 1) TIVHOd

n:d oLNO (D014 ‘30014) FLNEIYISIA $4dHi
J N HLIM NODITV $4dHi

(u ‘u); ‘(u ‘u)n TVE™
('9)d sywossaDOUd $4dHi

uonnquIIsip (g qooer - sjdwexy

559

Topowt JJH oy} woif adeoss mo[[e soinpaooid OISULIIXH e

“UOI)RID0SS® 90uaNbas pue 93eI0)s U0 soUSpuUIdap IjeurwI[e 03
S9)1IMOI SAISUR)Xd oIMbal AeUI S9p0d)), URINIO SUISIXO JO SUIIO] e

"WISTT
-Teded eyep Ajoads 01 S1ONIJSUOD [[€I0] PUR S)USUISIR)S Aeire 9s) —
"1noA®] AJ109ds 01 SOATIOQIIP UONAIIISIP PPV —
'SOUIYORUI AIOWSUI PaIe(s-UOU pue paleys y3oq 03 sWILI
-og81e rorrered eyep Surprod 1o yoeoidde [eas] ySiy e sopraoid JJH e

‘aIn)eu Ul [o[ered ejep oIe ‘SI9YOIRISII VSV N
01 1S9I9)UI JO SOPOd SUIPN[OUI ‘SOPOD JYIULIS JO oFejusdiad 93Ie] Y e

SUOISTI[oUO0))

560

‘sjuowaainba1 g JJH pue uonyeoyurep 1 IJH

10] AJus1Ind 03ed1y)) ur pey 3ureq s3urjeowr JJJH JO punol oyjouy e
yupy awoy /ffdy /npa-o1vissus-osa -mmm/ /:dypy Y[} OTeSOIN e

‘e661 IPwwng pue Jutrdg ‘0L1-T seded ‘-1

'SON ‘Z TOA ‘Buswwnibos 211pua10g se osty “Jeip/J1dH/ouqnd/ ut
npe‘ 92T s0 ' ue3 T3 woij dij snowAuoue Aq a[qe[resr juswndop JJH e

ung XOAUO)) 1e31(]

JOeITH Tedseyy OYITA]
sorqders wOoI[IS DHAN [PYu]
nsjng aqnOHu dnoiry puejioq

dH NGl $91eID0SSY pue Yony[

Le1) NINI yoreesoy [o[rered perddy
pajsaIaju] SHIOQPH pedunouuy sjonpoid pedunouuy

“u00s o[qe[res’ ag pnoys senqeded oseq yim sidfiduro)) e

:UOIYewWLIOJU] oY JInq

561

SESSION 11 Advanced Topics
Chaired by

Susan Voigt

11.1 Current Research Activities at the NASA-sponsored Illinois Computing Laboratory of
Aerospace Systems and Software - Kathryn Smith

11.2 Epistemology, SoftwareEngineering, and Formal Methods - C. Michael Holloway

562

35¢/47 100 £Y N95- 16479

Current Research Activities at the NASA-sponsored

lllinois Computing Laboratory of /O 7
Aerospace Systems and Software ‘

Kathryn A. Smith
Assessment Technology Branch
information and Electromagnetic Technology Division
Research and Technology Group

The lllinois Computing Laboratory of Aerospace Systems
and Software (ICLASS) is a NASA center for excelience in
computer science. ICLASS was established in 1985 with
two objectives:

(1) to pursue research in the areas of aerospace
computing systems, software and applications of
critical importance to NASA; and

(2) to develop and maintain close contacts between
researchers at ICLASS and at various NASA centers to
stimulate interaction and cooperation, and facilitate
technology transfer.

Current ICLASS research activities are in the areas of
parallel architectures and algorithms, reliable and fault-
tolerant computing, real-time systems, distributed
systems, software engineering, and artificial intelligence.

563

ICLASS - March 20, 1992

National Asronautics and Space Administration
Langiey Research Center \

linoi i I r Aer
ms an war

® NASA Center for excellence, established 1985
©® Objectives

=» Pursue research in aerospace computing systems, software and
applications important to NASA

< Develop close contacts and stimulate interactions between faculty and
students at ICLASS and researchers at NASA

@ Performance period Dec. 31, 1993- Dec. 30, 1994
@ Annual review, May 24-25, 1993

-» Attended by 13 NASA people (2 centers & JPL),

1 US Navy, and 4 from industry

=» Panel presentation by NASA et al.

-» Presentations by ICLASS researchers

-» Poster sessions presented by students during breaks
@ Over 70 recent publications

_ v

K. A. Smith

Nationat Aeronautics and Space AJminsiration e
- Langley Research Center

PARALLEL i
ARCHITECTURE — PUBLICATIONS

RELIABLE
COMPUTING

ENLARGED

/ —~ CONFERENCES

SOFTWARE
TECHNOLOGY BASE / o
ENGINEERING N PERFORMANCE
COMPUTING IN

AEROSPACE SPACE

COMPUTER SCIENCE \
oy

FUTURE NASA
MISSIONS

L4

DISTRIBUTED
SYSTEMS
ARTIFICIAL
INTELLIGENCE
REAL-TIME 2
SYSTEMS ok
NASA CENTER EXPOSURE TO LEADING

ICLASS CS RESEARCH

@ Focus attention of CS researchers on NASA related problems
® Involve graduate students and research faculty

i ® Enhance NASA Computer Science understanding

A}
-~
-

@ LaRC coordinates and maintains close technical communication

K. A. Smith

564

ICLASS - March 20, 1992

Transferred
]'echnologies

NASA ICLASS H
— (~10-10+ students

NSF & professional staff)
ONR,AFOSR, Industry :
1 NASA_ICLASS |
A New
(A few students) Idea
(one student)
Year 0 1-3 4-6
— I

K. A. Smith

National A ics and § i
- Langley Research Center

ICLASS Overview

[ICLASS (J. Liu, R. Iyer Co-Directors)

K. A. Smith

565

ICLASS - March 20, 1992

National Aeronautics and Space Administration

Langley Research Center ﬁ
EAR IVITIES -

Development of Parallel Programs for

Distrbuted Memory Multicomputers
Muttiprocessor Archilectures F“"dm'zw*‘ii and Scientilic
Aa%wmow lation and Architecture Formalization of Code Re-Use Through

Abstract Algorthms

Resource Management for Parallel and

Distrbuted Systems Three Dimensional Vision Systems

Ei I ed C

Paril Sysom Pomarce Ansysi ool teimd gy

Efticlent Execution of Fine-Grained
Concurrent Programs

High Performance Memory Systems for

m— I

Reiliable, Distributed, Database Management
ecovery in n ara itectures Systems

A Design Environment for Fauk Tolerant Systems Real-time Multiprocessor Operating Systems
Cendablny Validation of High Performance A Prototype Environment for Real-Time SyaD

Systems
Verification of VHDL. Digital Systems

K. A. Smith

National Aeronautics and Space A
" Langley Research Center

r i re and Algorit
® Development of Parallel Programs for Distributed Memory
Multicomputers

=» Design of efficient parallel algorithms to run on a variety of parallel
architectures

<» Develop algorithms on top of abstract parallel programming framework
(Chare Kernel)

® Multiprocessor Architectures

=» Develop, model and analyze high performance multiprocessor
architectures that are fault tolerant and highly mission adaptive

-» Refine, test and port methodology for modeling and analyzing the
performance of parallel processors under real workioads

@ Advanced Compilation and ArchitectureTechnology

-» Focus on the architecture and compiler techniques required to close the
gap between peak performance and sustained performance of high
performance multiprocessor systems

Cesource Management for Parallel & Distributed Systems

< Develop more efficient algorithms for combinatorial searches on sequential
and parallel computers

K. A. Smith

566

ICLASS - March 20, 1992

National Aeronautics and Space Administration
Langley Research Center

@ Parallel System Performance Analysis
-» Software tool set, Pablo, that supports source code performance
instrumentation and graphica! performance analysis
=» Focus of ICLASS student input-output performance optimization
@ Efticlent Execution of Fine-Grained Concurrent Programs
-» Focus on how to implement fine-grained, object-opriented concurrent
programs to execute efficiently on a variety of parallel architectures,
from small-scale, shared-memory mutliprocessors to fine-grained,
massively concurrent multicomputers
® High-Performance Memory Systems for Advanced Multiprocessors

=» Research aims at improving speed of large-scale multiprocessors

= Focus of ICLASS student - memory hierarchy performance of the operating
system

_ .

K. A, Smith

! ics and Space A
* Langley Research Conter

liabl E ler

® Recovery in Dependable Parallel Architectures

-» Develop new concepts in reliable memory management for dependable
operation of parallel architectures

@ A Design Environment for Fault Tolerant Systems

=» Investigate the development of a highly instrumented simulation-based
CAD environment

=» Environment allows a designer to interactively evaluate the reliability and
performance characteristics of proposed designs during the design process

@ Verification of VHDL Digital Systems

-» Development of System-level verification tools capable of handling large
systems

=» Emphasis on early detection of design errors
@ Dependabllity Validation of High Performance Systems

=» Improve memory management performance in object-oriented, dynamically
aliocated, garbage collected virtual memory systems

-» Evaluate reliability by fault simulation

K.A. Smith

567

ICLASS - March 20, 1992

Nationat Asronautics and Space Administration

Langiey Ressarch Center '\

ware Engineering and Artificial Intelligen

@ Functional Programming and Scientific Computing

- Address the problems of expressiveness and efficiency in functional
programming languages, emphasizing their use for scientific computation

@ Formalization of Code Re-Use Through Abstract Algorithms
= Study form and use of new abstraction method, using data structure
independent algorithm skeletons

® Three Dimensional Vision Systems

= Computer vision systems capable of three-dimensional
interpretation of “flat” video images

® Engineering Integrated CAD/CAM Systems for Reduced Cost
Manufacturing

-» Develop tools which improve interface between design and manufacturing
=» Move more manufacturability information into the design phase

\)

K. A. Smith

National Aeronautics and Space Administration g
- Langley Ressarch Center

istri I-Tim tem
@ Reliable, Distributed, Database Management Systems
- Design a reliable, distributed database management system
@ Muitiprocessor Operating Systems
- Design and implement of customizable operating systems for real-time and
high-performance multiprocessor applications
@ A Prototyping Environment for Real-Time Systems
- Build the Prototyping Environment for Real-Time Systems (PERTS)
-» PERTS an environment for
- Evaluation of new design approaches
- Experimentation with alternative system building blocks
- Analysis and performance profiling of prototype real-time systems

K. A. Smith

568

ICLASS - March 20, 1992

Typical ICLASS Project Lifecycle

Transferred
:I'echnol ogies

L 4

\

-___._,.

Industry
| NASAICLASS |

— (=10-10+ students
N & professional staff)
ONR,AFOSR, Industry

-4 NASA ICLASS |
A New
(A few students) Idea

/AN

(one student)

Year 0 1-3 4-6)

K. A. Smith

Nationai A ics and Space Admin:
- Langley Research Center

A hnol nsf
DEPEND, Dependability Analysis Tool - IBM,Raytheon, Boeing

PERTS, Real-time Prototyping Tool - Tri-Pacific (to market), IBM,
NASA Ames,NSWC

Pablo, Parallel System Performance - NASA GSFC, ARPA

Concert, Efficient Execution of Fine-Grained Concurrent Programs -
Caterpillar

TEACHER, Resource Management for Parallel and Distributed Systems -
NASA ARC

IMPACT, Compilation for Superscalar and Multiprocessor Architectures -
HP Labs., Intel, Sun Labs.

A DA AAALALAAALAALLAALAAALDLAAALDLANLLL AN AALNLsssss

For more information contact: Kathryn Smith, X41699
kas@sunspot.larc.nasa.gov

K. A. Smith

569

Y5¢/H8

7 ocdS

N95- 16480

Epistemology, Software Engineering, and Formal Methods

Abstract of Presentation

K 77

C. Michael Holloway

One of the most basic questions anyone can ask is,
“How do I know that what I think I know is true?” The
study of this question is called epistemology. Tradi-
tionally, epistemology has been considered to be of
legitimate interest only to philosophers, theologians,
and three-year-old-children, who respond to every
statement by asking, “Why?” Software engineers need
to be interested in the subject, however, because a lack
of sufficient understanding of epistemology contributes
to many of the current problems in the field.

Epistemology is a complex subject, one to which
many philosophers and theologians have devoted their
entire careers. The discussion here is necessarily brief
and incomplete; however, it should be sufficient to
demonstrate the critical importance of the subject to
software engineering.

To the fundamental question of how do we know
what is true, there are three basic answers: authority,
reason, and experience. An epistemology based on
authority states that truth is given to us by someone
more knowledgeable than ourselves. The two primary
variations of authority-based epistemologies are omni-
scient authority (the authority is God), and human
authority (the authority is a human expert).

An epistemology based on reason claims that what
is true is that which can be proven using the rules of
deductive logic. Finally, an epistemology based on
experience claims that what is true is that which can be
encountered through one or more of the senses.

Several different variations of experience-based
epistemologies exist. The two variations relevant to
this discussion are anecdotal experience and empirical
evidence. The first states that truth for any particular
individual or group of individuals is that which the
individual, or group, personally experiences. The sec-
ond states that truth is that which can be verified
through carefully controlled experiments.

The relative strengths of these epistemological
approaches are as follows. Omniscient authority pro-
vides absolute truth; if there is a God and He has spo-
ken on something, then what He says must, by
definition, be true. Reason yields conditional absolute
truth; if the premises on which a valid deductive argu-
ment are known to be true, then the conclusion of the
argument must also be true.

Empirical evidence provides probable truth; if con-
trolled experiments are designed properly and repeated
enough times, then it is highly probable that the results

570

accurately describe reality. Anecdotal experience
yields possible truth; if something happened for one
person, it is possible it might happen to others also.
Finally, human authority provides opinion.

On which of these approaches to epistemology is
software engineering mostly based?

The software engineering literature is filled with
pronouncements about how software should be devel-
oped (e.g., “Object-oriented development is the best
way to obtain reusable software”™). Rarely, if ever, are
these pronouncements augmented with either logical or
experimental evidence. Thus, one is forced to conclude
that much of software engineering is based on a combi-
nation of anecdotal experience and human authority.
That is, we know that a particular technique is good
because John Doe, who is an expert in the field, says
that it is good (human authority); John Doe knows that
it is good because it worked for him (anecdotal experi-
ence). This is a weak epistemological foundation on
which to base an entire discipline.

This current state should not be surprising; the
development of software engineering is following the
same pattern as the development of many other disci-
plines. Civil engineering, chemical engineering, aero-
nautical engineering, and others all had periods in
which they relied almost exclusively on anecdotal
experience and the subsequent authority of the
“experts”. Often, it took major disasters before practi-
tioners in such fields began to investigate fully the
foundations on which their field was based.

To date, although there have been many, many
software problems, there have been no major disasters
that have been directly attributed to software. How-
ever, unless a sound epistemological foundation is
established for software engineering, disasters will
come one day. To avoid this, research is needed to
develop valid approaches to answering questions about
both software products (e.g., are these requirements
consistent?) and software processes (e.g., is method A
better than method B?).

The Assessment Technology Branch (ATB),
which is part of the Information and Electromagnetic
Technology Division, Research and Technology Group,
is currently investigating empirical methods to answer
process-type questions and logical methods to answer
product-type questions. The remainder of the presenta-
tion discusses the second of these two avenues of
research.

A team led by Ricky W. Butler has been studying
the discipline of formal methods for over 6 years.
Other civil-servants on the team are Jim L. Caldwell,
Victor A. Carrefio, C. Michael Holloway, and Paul S.
Miner. Vigyan, Inc., Stanford Research Institute Inter-
national (SRI), Odyssey Research Associates (ORA),
and Computational Logic, Incorporated (CLI) conduct
research under contract.

Formal methods is' the applied mathematics of

computer systems engineeringz. Formal methods aims
to be to software engineering what fluid dynamics is to
aeronautical engineering and what classical mechanics
is to civil engineering. The mathematics of formal
methods includes predicate calculus (first order logic),
recursive function theory, lambda calculus, program-
ming language semantics, and discrete mathematics
(e.g., number theory, abstract algebra). To this mathe-
matical base, formal methods adds notions from pro-
gramming languages such as data types, module
structure, and generics.

There are many different types of formal methods
with various degrees of rigor. The following is a useful
classification of the possible degrees of rigor in the
application of formal methods:

* Level 0: No use of formal methods

* Level 1: Formal specification (using mathematical
logic or a specification language with formal seman-
tics) of all or part of a system

* Level 2: Formal specification at two or more levels
of abstraction and paper-and-pencil proofs that the
detailed specification satisfies the abstract one

» Level 3: Like level 2, except paper-and-pencil
proofs are replaced by formal proofs checked by a
semi-automatic theorem prover.

Presently, a complete (level 3) verification of a large,
complex system is impractical; however, application of
formal methods to critical portions of a system is prac-
tical and useful.

The specification of a simple phone book provides
a suitable simple example of many of the basic ideas
and benefits of formal methods. Please see the presen-
tation visuals that follow this abstract for this example.

Because of the promise that formal methods offers,
a considerable amount of high-quality research is being
conducted or sponsored by ATB. This research
includes, but is not limited to, the following projects:

1. Just like mathematics, formal methods should be treated as a
singular, not plural, noun.

2. 'The ideas apply equally well to both software and complex
hardware devices.

571

* Detailed design with complete level 3 verification of
the Reliable Computing Platform, which is a fault-
tolerant computing base able to recover from both
permanent and transient faults

» Design with level 2/3 verification of a transient fault-
tolerant clock synchronization circuit; this circuit has
also been fabricated, but the layout was done by
hand without formal verification

* In cooperation with SRI and Rockwell-Collins, level
3 specification and verification of the microcode of
the AAMPS microprocessor

* In cooperation with ORA and Union Switch and Sig-
nal, level 3 specification and verification of a next-
generation railroad control system

* Under contract, ORA is working with Honeywell on
level 3 specification and verification of aircraft navi-
gation functions

+ Under contract, Vigyan and SRI are working with
Loral, Johnson Space Center, and the Jet Propulsion
Laboratory on level 3 specification and verification
of some Space Shuttle functions

+ Under contract, SRI is working with Allied-Signal
on level 3 specification and verification of important
algorithms for fault-tolerance

In addition to these, and other, projects, the branch
conducts periodic workshops on formal methods. Pre-
vious ones were held in 1990 and 1992; the next one is
planned for 1995. Also, an extensive collection of
information on the research is available through the
World Wide Web at the following Universal Resource
Locator:

http://shemesh.larc.nasa.gov/fm-top.html

Interested individuals are encouraged to explore this
collection.

A lot of ground has been covered in this presenta-
tion, but the most important point is simple:

Epistemology: It’s important, learn about it
Software Engineering: It's immature, work on it
Formal Methods: It's promising, look for it

Epistemology
Software Engineering
and
Formal Methods

C. Michael Holloway

Assessment Tachnolo?y Branch
Information & Electrormgnehc ochnology Division
Ressarch & Techn:
Langley Research nter
National Aeronautics and Space Administration
United States Government

The Roie of Computers in LaRC R & D (June 15-16, 1994}

Introduction

. One of the most basic questions anyone can ask is

“How do | know that what | think | know is true?”

. The study of this question is called epistemology

. Traditionally, epistemology has been considered to be of
legitimate interest only to philosophers, theologians, and
three-year-old children

. At least one other group should be very interested in
epistemology — software engineers - because lack of
understanding in this area plagues the field

572

The Basics of Epistemology

. There are three basic answers to the question of how do we
know what is true

-- Authority: truth is given to us by a knowledgeable person

-- Reason: truth is what can be proven using the rules of
deductive logic

-- Experience: truth is what can be encountered through
one or more of the senses

« Anecdotal experience: truthis what an individual or a
group of individuals experiences personally

» Empirical evidence: truth is what can be verified
through carefully controlled experiments

Examples of Truth by Authority

. The Ten Commandments
(omniscient authority)

. 1-year-old, pointing to the family cat:
“Whatsthat?”

father: “Kitty”

(human authority)

573

Examples of Truth by Reason

. If that creature is a tove, then it is slithy
That creature is a tove
Therefore, that creature is slithy

. If the airplane was built by Boeing, then it is a jet
The airplane is not a jet
Therefore, the airplane was not built by Boeing

. X+Y=7
3Y-2X =1
Therefore, X=4and¥Y =3

Examples of Truth by Anecdotal
Experience

. Smoking doesn’t shorten your life because my
father smoked all his life and lived to be 95.

. Whenever | have the hiccups, | hold my breath
and count to 10 and they go away. Therefore,
holding your breath and counting to 10 cures
the hiccups.

. We used method M and had 40% fewer bugs in
testing. You should use method M, too.

574

Examples of Truth by Empirical
Evidence

. The dive-recovery flap for the P38 in World War

Il developed through tests in Langley’s 8-Foot
High Speed Tunnel

. 5,000 patients were given drug X. 5,000
patients were given no drugs at all. 4,998 of
the patients given drug X got better within 1
week. 3 of the patients given no drugs at all got
better within 1 week. Drug X helps.

Relative Strengths

. Omniscient Authority: absolute truth
. Reason: conditional absolute truth
. Empirical Evidence: probable truth
. Anecdotal Experience: possible truth

. Human Authority: opinion

575

How Does This Apply to
Software Engineering?

. The software engineering community is full of claims

“The best way to develop reusable software is to use object-oriented design.”
“Programmers should never be allowed to test their own code.”

“Getting control of the software process is the key — SEI's CMM is the way to do
this.”

“We need more standards!”

“Much progress has been made in the last few years in improving the way we
develop software.”

“GOTO’s are harmful.”

“CASE tools are the best way to improve software productivity.”

. Many people accept these, or other similar, claims as being
true

The Fundamental Question

What is the
epistemological foundation
for accepting

these claims?

576

The Answer

- Logically sound arguments are rarely given
. Virtually no empirical evidence is cited

. Instead, software engineering is based almost entirely on a
combination of human authority and anecdotal experience

-- We know that technique C is good because Jane Doe,
who is a recognized authority in the field, says that it is
good (human authority)

-- Jane Doe knows that it is good because she used it on a
project once and got good results (anecdotal experience)

. This is a weak epistemological foundation, one on which no
legitimate claims of success can be based

Implications of This Epistemological
Weakness

- Until we get adequate evidence, we should be very
cautious in the claims we make and the standards we set

-- ltis fine to say, “Method M seems to have improved our productivity, so you
might want to try it.”

But it is dishonest to say, “I/f you want to improve your productivity, you must
use Method M.”

-- “Company R used method F and found errors they don't think they would
have found using their old methods,”is fine

“Method F finds errors that other methods do not find,” is dishonest
. The software engineering community should be

investigating methods for obtaining strong (that is, logical or
empirical) evidence

577

Why Has More Not Been Done?

. The development of software engineering is following the
same pattern as the development of other disciplines

-- Civil engineering, chemical engineering, aeronautical engineering, etc. all
had periods in which they relied almost exclusively on anecdotal evidence

-- Often, it took major disasters to prompt changes

. ltis hard

. Itis expensive

. It is not glamorous

. Few people care: We haven’t had a major disaster yet

Why Must More Be Done?

. Without adequate evidence, we are easily influenced by the
latest bandwagon that goes rumbling by

. Without adequate evidence, we may well “cast-in-concrete”
something that ought not even be “cast-in-mud”

. Without adequate evidence, the following two statements
are equally as meaningless:

-- You shall use method M in developing your software
-- ‘Twas brillig by the slithy tove

. Without adequate evidence, disasters are inevitable

578

Towards Establishing a Valid
Epistemological Foundation

- Recognize the fundamental need for such a foundation

- Understand the different approaches needed for process
and product

-- Process questions (e.g., Is method A better than method
B?) need to be answered empirically

-- Product questions (e.g., Are my requirements
consistent?) need to be answered by an appropriate
combination of logical and empirical methods

. Refuse to accept claims based on insufficient evidence

Current Research at LaRC

- Kelly Hayhurst (IETD/ATB) is leading an effort to develop
an empirical evaluation of a particular approach to IV & V

For more information, contact Kelly
Email: k.j.hayhurst@LaRC.NASA.GOV
Phone: 46215

- The formal methods team led by Ricky Butler (IETD/ATB) is

investigating logical methods for answering product-type
questions

-- Other team members are Jim Caldwell, Victor Carrefio,
Michael Holloway, and Paul Miner

-- Remainder of talk concerns this work

579

Further Reading on Epistemology

. If you are interested in more information on epistemology, |
recommend you start with the following two books:

-- Thales to Dewey, by Gordon H. Clark, 2nd edition, 1989,
ISBN 0-940931-26-5

-- The Philosophy of Science, by Gordon H. Clark, 2nd
edition, 1987, ISBN 0-940931-18-4

. These two books contain pointers to most of the important
philosophical works throughout the ages

~ Singular or Plural?

. Which of the following is correct?

Formal methods is the applied mathematics ...
OR

Formal methods are the applied mathematics ...

. Answer depends on the writer or speaker

. | will tend to use “formal methods” as singular

580

What is Formal Methods?

- Formal methods is the applied mathematics of computer
systems engineering

. The mathematics of formal methods includes:

-- predicate calculus (1st order logic)
-- recursive function theory

-- lambda calculus

-- programming language semantics

-- discrete mathematics: number theory, abstract algebra,
eflc.

What is Formal Methods?

{continued)
System Designed | Engineering Theory
Bridge Civil Classical Mechanics
Airframe Aeronautical | Fluid Dynamics
Nuclear Reactor | Nuclear Quantum Mechanics
Digi?;ézi:nics Software Formal Methods

581

Classical vs Computer Systems

Classical Systems Computer Systems
continuous state space n:discrete state space
smooth transitions abrupt transitions
finite testing & interpolation || finite testing inadequate,
acceptable interpolation unsound
mathematical modeling prototyping & testing
build to withstand additional}| build to specific
stress assumptions
predictable surprising

What Makes a Technique a
Formal Method?

. Formal method = logic + programming language concepts

. Important attributes:

-- logic based

-- programming language concepts (e.g., data types,
module structure, generics)

-- fully and formally specified semantics

-- should be able to express what is done without saying
how it is done (i.e., non-procedural)

-- supports the building of useful tools for analysis

582

Levels of Rigor of Formal Methods

. Level 0. No use of formal methods

- Level 1: Formal specification (using mathematical logic or
a specification language with formal semantics) of all or
part of a system

. Level 2. Formal specification at two or more levels of
abstraction and paper-and-pencil proofs that the detailed
specification satisfies the abstract one

. Level 3. Like level 2, except paper-and-pencil proofs are

replaced by formal proofs checked by a semi-automatic
theorem prover

'Extent of Application

- Formal Methods is not an all-or-nothing approach

- Complete formal verification of a large complex system is
impractical at this time

| Formal Requirements |
} proof

| High Level Design |
4 proof

| Detailed Design |
¥ proof

| Implementation

- Application of formal methods to critical portions of a
system is practical and useful

583

Extent of Application (example)

. In the Reliable Computing Platform, we use formal methods
to establish:

ENOUGH_WORKING_HARDWARE
)
PROPER_OPERATION

. We use reliability analysis to calculate:
Probability[ENOUGH_WORKING_HARDWARE]

. Reliability analysis relies on physical testing of devices to
establish some important parameters

Level 1 Example: Phone Book
English Requirements

. The phone book shall store the phone numbers
of a city

. Given a name, there shall be a way to retrieve
an associated phone number

. It shall be possible to add and delete entries
from the phone book

584

Level 1 Example: Phone Book
Choosing a Specification Approach

- How do we represent the phone book mathematically?

1. A set of ordered pairs (name, number). Adding and
deleting entries is by set addition and deletion.

2. A function whose domain is all possible names and

range is all phone numbers. Adding and deleting entries
is by modification of function values.

3. A function whose domain is only names currently in the
phone book and range is phone numbers. Adding and
deleting entries is by modification of the function domain
and values. (Z style)

- We choose to use approach 2

Level 1 Example: Phone Book
Specifying the Book
- Using traditional mathematical notation, we would write:
Let N = setof names
P = set of phone numbers
book: N — P

- To indicate that we do not have a phone number for all
possible names, but only for names of real people, we
decide to use a special number: p € P

- An empty phone book is specified as follows:

emptybook: N — P
emptybook(nm) = p

585

Level 1 Example: Phone Book
Accessing an Entry

Let N = setof names
P = set of phone numbers
book: N —» P
B = setof functions: N — P

FindPhone: B X N —> P
FindPhone(bk,name) = bk(name)

Note that FindPhone is a higher-order function, because its
first argument is a function

Level 1 Example: Phone Book
Adding/Deleting an Entry

Let N = setof names
P = set of phone numbers
book: N > P
p €P

B = setof functions: N —» P

AddPhone: B X NX P —5 B

bk(x) if x+ name
AddPhone (bk,name,num) (x)= .
num if x=name

DelPhone: B X N — B

bk(x) if x+# name
DelPhone(bk,name) (x)= .
p if x=name

586

Level 1 Example: Phone Book
Complete Specification

Let N = setof nhames
P = set of phone numbers
book: N - P
p EP
B = setof functions: N - P

emptybook: N — P
emptybook(nm) = p

FindPhone: B X N — P
FindPhone(bk,name) = bk(name)

AddPhone: B X NX P — B {bk(x) if x# name

AddPhone (bk,name,num) (x)= .
num if x=name

DelPhone(bk,name) (x)=

DelPhone: B X N — B ([bk(x) if x# name
p if x=name

Level 2 Example: Phone Book
Putative Theorems

A putative theorem is a theorem that we know must be true if
we have formulated the specification correctly.

Lemma putative 1:
FindPhone (AddPhone (bk,name,num),name) = num

Proof:

FindPhone (AddPhone (bk,name,num),name) = num

AddPhone(bk, name,num) (name) = num

num = num

Q.E.D.

587

Level 2 Example: Phone Book
Putative Theorems (continued)

Lemma putative 2. bk(name) = p DO
DelPhone (AddPhone (bk, name,num), name) = bk

Lemma putative 3: (Vi:name # name) A
book = AddPhone(bk, name, num) A
book = AddPhone(book, name , num) A
book, = AddPhone(book , name, , num,) A

book, = AddPhone(book , name, , num,)

-
FindPhone(book , name) = num

Formal methods can establish that a property holds even in
the presence of an arbitrary number of operations; testing
can never establish this.

Level 3 Example: Phone Book
PVS Specification

phonebook: THEORY
BEGIN

names: TYPE

name0: names

pbh_number: TYPE

p_0: ph_number

book: TYPE = [names -> ph_number]

name: VAR names

emptybook(name): ph_number = p_0

bk: VAR book

FindPhone(bk, name): ph_number = bk(name)

num: VAR ph_number
AddPhone(bk, name, num): book = bk WITH [name := num]

DelPhone(bk, name): book = bk WITH [name := p_0]
putative_1l: LEMMA FindPhone(AddPhone(bk,name,num),name) = num

putative_2: LEMMA bk(name) = p_0 IMPLIES
DelPhone(AddPhone (bk, name, num) ,name) = bk

END phonebook

588

Level 3 Example: Phone Book
Proof Using PVS

putative_1 :

{1} (FORALL (bk: book), (nm: names), (num: ph_number):
FindPhone (AddPhone(bk, nm, num), nm) = num)

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,
this simplifies to:

putative_1 :

{1} FindPhone(AddPhone(bk!{l, nm!l, num!l), nm!l) = num!l

Rule? (expand “FindPhone”)

Level 3 Example: Phone Book
Proof Using PVS (continued)
Rule? (expand “FindPhone”)
Expanding the definition of FindPhone,this simplifies to:
putative_1 :
{1} AddPhone(bk!l, nm!l, numil)(nmi!l) = num!l
Rule? (expand “AddPhone”)
Expanding the definition of AddPhone,this simplifies to:
putative_1l :

{1} TRUE

which is trivially true.
Q.E.D.

Run time = 1.02 secs.
Real time = 20.00 secs.

589

Level 1 Example: Phone Book
Deficiencies in the Specification

. Our specification does not rule out the possibility of
someone having a “p” phone number

. We have not allowed multiple phone numbers per single
name

. Our specification does not say anything about whether
there should be a warning if a deletion is requested on
name that is not in the phone book

How do we remedy these deficiencies?

Level 1 Example: Phone Book
Overcoming Deficiencies 1 & 2

Let N = set of names

P = set of phone numbers
book: N — 2°

B = set of functions: ¥ —» 2°

emptybook(name) = &

FindPhone: B X N — 2°
FindPhone(bk,name) = bk(name)

AddPhone: B X NX P - B [bk(x) if x# name
AddPhone (bk,name,num) (x)=

bk (name)L (num}
if x=name

DelPhone: B X N — B {bk(x) if x+# name

DelPhone(bk,name) (x)= & if am
X = name

590

Level 1 Example: Phone Book
An Additional Deficiency

- Notice that the function DelPhone deletes all of the phone
numbers associated with a name

. There is no way to remove just one of the phone numbers
that is associated with a given name

. The original requirements did not address this situation: to
address it, we must define an additional function:

DelPhoneNum: B X N X P - B

bk(x) if x+ name
DelPhoneNum(bk,name,num) (x)= bk (name) \{num}

if x=name

Example: Phone Book
Revised Requirements
riginal '
- The phone book shall store the phone numbers of a city

- Given a name, there shall be a way to retrieve an associated phone number
- It shall be possible to add and delete entries from the phone book

Revised Requirements

- For each name in the city, a set of phone numbers shall be stored

- Given a name, there shall be a way to retrieve the associated phone numbers

- It shall be possible to add a new name and phone number

- It shall be possible to add new phone numbers to an existing name

- It shall be possible to delete a name from the phone book

- It shall be possible to delete one of the phone numbers associated with a name
- A warning need not be given for a requested deletion of a name not in the city

- A warning need not be given for a requested deletion of a non-existent phone
number

591

Example: Phone Book
Observations

. Our specification is abstract. The functions are defined
over infinite domains.

. In translating the requirements from English into a more
formal notation, many things that were left out of the
English were explicitly enumerated.

. The formal process exposed ambiguities and deficiencies
in the requirements. E.g., we had to choose between

book: N - P
book: N — 2°

. Putative theorem proving and scrutiny revealed deficiencies
in the formal specification

Example: Phone Book
More Observations

. There are many different ways to formally specify

.- No matter what representation you chose you are making
some decisions that bias the implementation

- The goal is to minimize this bias and yet be complete

. The process of formalizing the requirements can reveal
problems and deficiencies and lead to a better English
requirements document also

. The formal specification process is similar to the
mathematical modeling process of engineering disciplines

592

Formal Methods Research at LaRC

. Detailed design with complete level 3 verification of a
Reliable Computing Platform

- Design with level 2/3 verification of a transient fault-tolerant
clock synchronization circuit and fabrication of the circuit

. With SRl International & Rockwell-Collins, level 3
specification and verification of the microcode of the
AAMPS5 microprocessor

. With Odyssey Research Associates & Union Switch and
Signal, level 3 specification and verification of next-
generation railroad control system

. ORA & Honeywell, level 3 specification and verification of
aircraft navigation functions

Formal Methods Research at LaRC

(continued)

- Vigyan & SRI working with Loral, JSC, JPL on level 3
specification and verification of some Space Shuttle
functions

- SRI working with Allied-Signal on level 3 specification and
verification of important algorithms for fault-tolerance

- Conduct periodic workshops on formal methods; previous
ones in 1990, 1992, with next one planned for 1995

- Maintain extensive collection of information on the
research, accessible through the World Wide Web at URL

http://Shemesh.larc.nasa.gov/fm-top.htm!

593

ONGINAL PAGE B
OF POOR QUALITY

594

Epistemology
It's Important, Learn About It

Software Engineering
I’'s Immature, Work On It

Formal Methods
It's Promising, Look For It

ORNNAL PAGE 1
UF POOR QUALITY 595

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188
mw::qwmh::munxnwh?u T"uuvp: " uu:':mmu ph ,m. L ,mﬂn el
gathering maintaining the data nesded, compisting reviewing the collsction of information. comments regarding burden estimate or arny aspedt
for
mewhmmbwwwmmu mnu‘laog)ovnfm- -'ummmsmm
7. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
October 1994 Conference Publication
4. TITLE AND SUBTITLE 8. FUNDING NUMBERS
The Role of Computers in Research and Development at Langley WU 505-90-53
Research Center
6. AUTHOR(S)

Carol D. Wieseman, Compiler

7. PRRFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
NASA Langley Research Center REPORT NUMBER
Hampton, VA 23681-0001

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
National Aeronautics and Space Administration REPORT NUMBER
Washington, DC 20546-0001 : NASA CP-10159

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified - Unlimited
Subject Category 62

13. ABSTRACT (Maximum 200 words)

This document is a compilation of the presentations given at the workshop, “The Role of Computers in
Research and Development at Langley Research Center,” on June 15-16, 1994. The objectives of the
workshop sponsored by the Computer Systems Technical Committee were to inform the LaRC community of the
current software system and software practices being used at LaRC. To meet these objectives, there were talks
presented by members of the Langley community, Naval Surface Wartare Center, Old Dominion University, and
Hampton University.

The workshop was organized in 10 sessions as follows: Software Engineering; Software Engineering
Standards, Methods, and CASE Tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World
Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced
Topics.

14. SUBJECT TERMS 18. NUMBER OF PAGES

Software Engineering 604

16. PRICE CODE
A99
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LUIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified
Rev. 2

NSN_7540-01-280-5500 B eaiom, Doie

